Quantum feedback experiments stabilizing Fock states of light in a cavity

T. Rybarczyk 1, B. Peaudecerf 1, A. Signoles 1, X. Zhou 1, C. Sayrin 1, S. Gleyzes 1, I. Dotsenko 1, M. Brune 1, J.M. Raimond 1, S. Haroche 1, 2, P. Rouchon 2
1 Laboratoire Kastler Brossel, CNRS, ENS, UPMC-Paris 6, 24 rue Lhomond, 75231 Paris, France
2 Collège de France, 11 place Marcellin Berthelot, 75231 Paris, France
3 Centre Automatique et Systèmes, Mines ParisTech, 60 boulevard Saint Michel, 75006 Paris, France
Contact: rybarczyk@lkb.ens.fr

Aim of the experiments
Preparation of photon number (Fock) states of a cavity field and correction of quantum jumps due to decoherence using two quantum feedback schemes

Feedback loop components
System: Microwave cavity field
Target: Fock state $|n\rangle_{\text{target}}$
Sensor (quantum): Off resonant atoms performing a QND measurement of the field
Controller (classical): State ρ estimation at each atomic detection and choice of the feedback action (real-time A/D in computer system)
Actuator: Injection of a small coherent field (classical) OR resonant atoms emitting or absorbing photons (quantum)

Two different feedback actions
- Controller K calculates the optimal classical field to inject in C (amplitude A and phase ϕ)
- K chooses the actuator atom type: $|e\rangle$ (emitter) OR $|g\rangle$ (absorber)

Quantum Non-Demolition (QND) measurement of the photon number

Quantum state estimator
State estimation:
- Each detection projects ρ
- Trace over unresolved atoms
- Cavity field estimation using a Liouville superoperator obtained from solving master equation

Experimental imperfections:
- Samples with Poisson atom number distribution: $\langle n \rangle = 0.5 - 1.3$ atom/sample
- Time between samples: $T_n = 82 \mu s$
- Atom preparation errors (~1%)
- Erroneous state detection (~5%)
- Detection efficiency: 25%
- Black-body thermal field: $n_0 = 0.05$
- Cavity lifetime: $T_m = 65$ ms

Resonant interactions
- Atoms are tuned in resonance by a DC Stark field applied across the cavity.
- No coherences: considering photon number distribution $p(n)$ is enough.
- After each detection $p(n)$ updates using Bayes’ law from previous $p(n)$ and transition probabilities (Rabi oscillations in the cavity containing n photons).
- For all n, calibration of Rabi oscillations
- Interaction times T_1 to T_7 for $|e\rangle$ and $|g\rangle$ atoms set close to 2π-pulse $\eta|n\rangle_{\text{target}}$
- Two-atom events also considered

Feedback with coherent field injection
- Injection of a small coherent field (classical) as actuator to correct for quantum jumps of the cavity field state
- State estimation needs to take into account the phase of the field and the full density operator.
- The injection of this small field displaces ρ
- $\rho \rightarrow D(\alpha) \rho D(-\alpha)$ with $D(\alpha) = \exp(\alpha a^+ a)$
- Quantum trajectory: feedback stabilization of $|3\rangle$

Results for feedback with atomic actuators
- Quantum trajectory: feedback stabilization of $|4\rangle$
- Photon populations of coherent states ($n = \sqrt{m_{\text{target}}}$)
- Stabilization efficiency: average populations for 4000 trajectories stopped at an arbitrary time
- Preparation efficiency: trajectory stopped when $P(n_{\text{target}}) \geq 0.8$

Perspectives
- Adaptive QND measurement of photon numbers
- Quantum feedback: stabilization of photon number cat states
- G. Sayrin et al., Nature 477, 73-77 (2011)