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Interaction Hamiltonians

Interaction of quantum light with matter

Quantum field and classical charges

Quantum field and quantized atom
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Interaction Hamiltonians

Quantum field and classical charges
Coupling of a quantum mode with a classical current (model of electronic
source)

j(r, t) = j0(r)e−iω0t (1)

Simplified field Hamiltonian

H ′0 =
∑
`

~ω`a†`a` (2)

From classical interaction energy, −j ·A, guess the interaction Hamiltonian

Hi = −
∫
V
j(r, t) · A(r, t) d3r (3)

where

A(r, t) =
∑
`

√
~

2ε0ω`V
a`f`(r) + c.c. (4)
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Interaction Hamiltonians

Quantum field and classical charges
Interaction representation ∣∣∣Ψ̃〉 = U†0 |Ψ〉 (5)

with
U0 = e−iH

′
0t/~ =

∏
`

e−iω`ta
†
`a` (6)

New Hamiltonian
H̃ = U†0HiU0 (7)

Annihilation operator transformation

ã` = e iω`ta
†
`a`a`e

−iω`ta
†
`a`

= a` − iω`ta` +
(iω`t)2

2
a` + . . .

= a`e
−iω`t (8)

using Baker Hausdorff and [N`, a`] = −a`.
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Interaction Hamiltonians

Quantum field and classical charges
Interaction representation

H̃ = −
∫

d3r
[
j0(r)e−iω0t + j∗0(r)e iω0t

]
·

[∑
`

√
~

2ε0ω`V

(
a`e
−iω`tf`(r) + a†`e

iω`tf∗` (r)
)]

(9)

Rotating wave approximation for ω` ≈ ω0:

H̃ = −
∑
`

√
~V

2ε0ω`
J0a
†
`e
−i(ω0−ω`)t + h.c. (10)

where the complex scalar J0 is defined as:

J0 =
1

V

∫
d3r j0(r) · f∗` (r) (11)
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Interaction Hamiltonians

Quantum field and classical charges
Single mode evolution

Setting

K0 =

√
~V

2ε0ω
J0 (12)

we can write the Hamiltonian in the simpler form

H̃ = −K0e
−iδta† + h.c. (13)

where
δ = ω0 − ω (14)

Note that the Hamiltonians at different times do not commute. Evolution
operator not simple.
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Interaction Hamiltonians

Quantum field and classical charges
Single mode evolution

From t to t + dt:
H̃ = −K0e

−iΦa† + h.c. (15)

where
Φ = δt (16)

The evolution operator is then a displacement:

U(t, t + dt) = D(dα) (17)

with

dα =
iK0

~
e−iΦdt (18)
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Interaction Hamiltonians

Quantum field and classical charges
Single mode evolution

By adding up the amplitudes and within a global phase, the final state is a
coherent state with amplitude

β =

∫ t

0

iK0

~
e−iδt

′
dt ′ = −K0

~δ

[
e−iδt − 1

]
(19)

For δ 6= 0, periodic variation of the amplitude

For δ = 0

β =
iK0

~
t (20)

Linear amplitude and quadratic photon number growth
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Interaction Hamiltonians

Quantum field and quantized atom
Hamiltonians

Hap = − q

m
P · A(0) (21)

or
Hde = −D · E(0) (22)
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Interaction Hamiltonians

Quantum field and quantized atom
Electric dipole interaction

Dipole
D = dεd |g〉 〈e|+ h.c. (23)

Electric field in the plane mode basis

E(0) = i
∑
`

√
~ω`

2ε0V
a`ε` + h.c. (24)

For nearly resonant modes (dominant effect in general), two of the four
terms in D · E(0) can be neglected (RWA approximation)
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Spontaneous emission in free space

Spontaneous emission

Coupling an atom to the continuum of modes in free space. Decay of the
excited states and (diverging) shifts of the energy levels.

Fermi Golden Rule argument

Wigner Weisskopf calculation
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Spontaneous emission in free space

Fermi Golden rule
Initial state |e, 0〉. Continuum of final states |g , 1`〉. Compute separately
the rate of photon emission in all directions:

Γ =

∫
dΓdΩ (25)

dΓ =
∑
ε`

2π

~
|W |2dρ(E = ~ω0, dΩ) (26)

Density of states dρ = ρdΩ/4π where

ρ(ν) =
8π

2c3
Vν2dν (27)

With ρ(E )dE = ρ(ν)dν for E = hν = ~ω0

ρ(E ) =
V

2π2c3

1

~

(
E

~

)2

(28)
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Spontaneous emission in free space

Fermi Golden rule

Finally

dρ(E = ~ω0, dΩ) =
V

8π3

ω2
0

~c3
dΩ (29)

Coupling
|W |2 = | 〈g , 1`|D · E |e, 0〉 |2 (30)

Without loss of generality
εd = uz (31)

|W |2 =

∣∣∣∣∣duz · ε∗`
√

~ω`
2ε0V

∣∣∣∣∣
2

(32)

We can now evaluate the rate

dΓ =
∑
ε`

1

8π2ε0

ω3
0

c3

|d |2

~
|uz · ε∗` |2dΩ (33)
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Spontaneous emission in free space

Fermi Golden rule

Expand uz on the basis of uk (propagation direction) and two orthogonal
linear polarizations ε1 and ε2:

(uz · ε∗1)2 + (uz · ε∗2)2 = 1− (uz · uk)2 = 1− cos2 θ = sin2 θ (34)

Integration over solid angle:

Γ =
1

8π2ε0

ω3
0

c3

|d |2

~

∫ 2π

0

∫ π

0
sin3 θ dθdφ (35)

and finally

Γ =
ω3

0|d |2

3πω0~c3
(36)

Already used many times in these lectures!
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Spontaneous emission in free space

Wigner-Weisskopf
A more detailed insight. Atom-field state at time t:

|Ψ(t)〉 = c0(t) |e, 0〉+
∑
`

c`(t) |g , 1`〉 (37)

Schrödinger equation:

i~
dc0

dt
= ~ω0c0 +

∑
`

V`c` (38)

i~
dc`
dt

= ~ω`c` + V ∗` c0 (39)

with
V` = −〈e, 0|D · E |g , 1`〉 (40)

Interaction representation:
b` = c`e

iω`t (41)

i~
db`
dt

= e iω`tV ∗` c0 (42)
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Spontaneous emission in free space

Wigner-Weisskopf

Formal integration

b`(t) =
V ∗`
i~

∫ t

0
c0(t ′)e iω`t

′
dt ′ (43)

or

c`(t) =
V ∗`
i~

∫ t

0
c0(t ′)e iω`(t′−t) dt ′ (44)

Setting
c0 = e−iω0tα0(t) (45)

We get
dα0

dt
= −

∑
`

|V`|2

~2
e iω0t

∫ t

0
e iω`(t′−t)e−iω0t′α0 dt

′ (46)
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Spontaneous emission in free space

Wigner-Weisskopf

Changing for the variable τ = t − t ′, we get

dα0

dt
= −

∫ t

0
N (τ)α0(t − τ) dτ (47)

where the integral kernel N is:

N (τ) =
1

~2

∑
`

|V`|2e i(ω0−ω`)τ (48)

N (τ) =
|d |2

~2

[∑
`

|uz · ε`|2
~ω`

2ε0V
e−iω`τ

]
e iω0τ (49)

In a time of the order of 1/ω0, N practically vanishes
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Spontaneous emission in free space

Wigner-Weisskopf

Thus:∫ t

0
N (τ)α(t − τ) dτ ≈ α0(t)

∫ ∞
0
N (τ) dτ =

(
Γ

2
+ i∆

)
α0(t) (50)

dα0

dt
= −

(
Γ

2
+ i∆

)
α0 (51)

Γ spontaneous emission rate

∆ level shift

J.M. Raimond Atoms and photons September 12, 2016 19 / 44



Spontaneous emission in free space

Wigner-Weisskopf

Final solution
c0(t) = e−Γt/2e−iω0te−i∆t (52)

c`(t) =
V`
i~

1− e−Γt/2e i(ω`−ω0−∆)t

(Γ/2)− i(ω` − ω0 −∆)
(53)

|c`(∞)|2 =
|V`|2

~2

1

(Γ2/4) + (ω` − ω0 −∆)2
(54)

a lorentzian profile for the spontaneous emission line.
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Spontaneous emission in free space

Wigner-Weisskopf

Explicit integration of the kernel:(
Γ

2
+ i∆

)
=
|d [2

~2

∑
`

(uz · ε`)2 ~ω`
2ε0V

∫ ∞
0

e i(ω0−ω`)τ dτ (55)

Using ∫ ∞
0

e iωt dt = πδ(t) + iPP 1

ω
(56)

get for the real part:

Γ =
2π|d |2

~2

∑
`

(uz · ε`)2 ~ω`
2ε0V

δ(ω0 − ω`) (57)

same result as the Fermi Golden Rule.
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Spontaneous emission in free space

Wigner-Weisskopf

Level shift

A severe problem

∆ is divergent

A (not so simple) solution

Renormalization...

J.M. Raimond Atoms and photons September 12, 2016 22 / 44



Photodetection

Photodetector model

A simple single system photodetector. A ground state |g〉 and a
continuum of excited states |ei 〉. Transition to excited state is a click.
Detector Hamiltonian

Hd =
∑
i

~ωi |ei 〉 〈ei | (58)

Detector-field interaction −D · E with

D =
∑
i

di (εi |g〉 〈ei |+ ε∗i |ei 〉 〈g |) (59)

Hence, within irrelevant factors

Hi =
∑
i

κi |ei 〉 〈g |E+ + h.c. (60)
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Photodetection

Photodetector model

Interaction representation a` → a` exp(−iω`t), |ei 〉 〈g | → exp(iωi t) |ei 〉 〈g |

H̃i =
∑
i

κie
iωi t |ei 〉 〈g |E+(t) + h.c. (61)

Initial condition
|Ψ(0)〉 = |g〉 ⊗ |Ψf 〉 (62)

State at time t

|Ψ(t)〉 = |g〉 ⊗ |Ψf 〉+
1

i~

∫ t

0
H̃i (t

′)
∣∣Ψ(t ′)

〉
dt ′ (63)

First-order perturbative solution by replacing in the r.h.s. |Ψ(t ′)〉 by
|Ψ(0)〉 = |g〉 ⊗ |Ψf 〉.
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Photodetection

Photodetector model

Noting that, in H̃i , |g〉 〈ei |E− gives zero on the initial state

|Ψ(t)〉 = |g〉 ⊗ |Ψf 〉+
1

i~
∑
i

κi

[∫ t

0
dt ′ e iωi t

′
E+(t ′) |Ψf 〉

]
⊗ |ei 〉 (64)

Probability for having a count at time t

pe =
∑
i

| 〈ei |Ψ〉 |2 =
∑
i

〈Ψ |ei 〉 〈ei |Ψ〉 (65)

pe =
1

~2

∑
i

|κi |2
∫ t

0
dt ′
∫ t′

0
dt ′′ e iωi (t

′−t′′) 〈Ψf |E−(t ′′)E+(t ′) |Ψf 〉

(66)
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Photodetection

Photodetector model

For a high density of final states∑
i

−→
∫

dωρ(ω) (67)

∫
dωe iω(t′−t′′) = πδ(t ′ − t ′′) (68)

Hence

pe(t) ∝
∫ t

0
dt ′ 〈Ψf |E−(t ′)E+(t ′) |Ψf 〉 (69)

With a large set of photo-detecting systems the ‘photocurrent’ is
proportional to

I (t) = 〈Ψf |E−(t)E+(t) |Ψf 〉 (70)
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Photodetection

Intensity correlations
Classical Hanbury-Brown and Twiss

A source, a balanced beamsplitter and two detectors. Correlate the
photocurrents:

G2(τ) = I1(t)I2(t + τ) (71)

At long times, no correlation.

G2(∞) = (I )2 (72)

At τ = 0
G2(0) = I 2 (73)

I 2 − (I )2 = (I − I )2 ≥ 0 (74)

G2(0) ≥ G2(∞) (75)
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Photodetection

Intensity correlations
HBT stellar interferometry

Nature paper (178, 1046): determination of the angular diameter of stars.

D1

D2

I1

I2

D1 d

L

r1A

D2

A B

r1B

R

(a) (b)
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Photodetection

Intensity correlations
HBT stellar interferometry

Measure the intensity correlations at zero delay as a function of the
distance d . Envelope field received by D1:

E1 = αe ikr1Ae iφA + βe ikr1B e iφB (76)

with
I1 = |E1|2 = |α|2 + |β|2 (77)

For D2

E2 = αe ikr2Ae iφA + βe ikr2B e iφB (78)

After a painful computation and elimination (on the average) of random
phases

I1(t)I2(t) = I1 I2 + |α|2|β|2 cos k [r1A + r2B − r1B − r2A] (79)
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Photodetection

Intensity correlations
HBT stellar interferometry

For a symmetric configuration, when A and B are symmetric with respect
to the mediating segment D1 − D2, r1A − r2A = r2B − r1B and

I1(t)I2(t) = I1 I2+|α|2|β|2 cos 2k(r1A−r2A) = I1 I2+|α|2|β|2 cos 2
ω

c
(r1A−r2A)

(80)
or

I1(t)I2(t) = I1 I2 + |α|2|β|2 cos kdΘ (81)

where Θ is the star’s angular diameter. Resolution only limited by the
distance between the two detectors.

J.M. Raimond Atoms and photons September 12, 2016 30 / 44



Photodetection

Intensity correlations
Quantum intensity correlations

Admit
G2(r1, r2, t, τ) = 〈Ψf | Ĝ2 |Ψf 〉 (82)

where
Ĝ2 = E−(r1, t)E−(r2, t + τ)E+(r2, t + τ)E+(r1, t) (83)

Normalized correlation function

g2 =
G2

I1 I2
(84)
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Photodetection

Intensity correlations
Two field modes

Simple situation: two field modes and two detectors.

E+
i = Eie i(k1·r−ωi t)ai (85)

where i = 1, 2.
E+ = E+

1 + E+
2 (86)

Field state: product of Fock states |Ψ〉 = |N1,N2〉. Complex calculation:

No interference in the simple photocurrents

Interferences in the g2 correlation function

〈Ψ| a†1a
†
2a1a2 |Ψ〉+ h.c. =

2E2
1E2

2N1N2Re
[
e i [(k2−k1)·(rA−rB)−(ω2−ω1)(tA−tB))]

]
(87)
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Photodetection

Intensity correlations
Single emitter: antibunching

A single atom emitter and compute

G2(r, 0, r, τ) ≡ G2(τ) (88)

Use Heisenberg picture, E+ being proportional to the atomic dipole i.e.
σ−(τ)

G2(τ) = 〈σ+(0)σ+(τ)σ−(τ)σ−(0)〉 (89)

Initially σ−(0) = |g〉 〈e| and σ+(0) = |e〉 〈g |. At time τ ,
σ±(τ) = U†σ±(0)U and

G2 =
〈
|e〉 〈g | [U† |e〉 〈g |U][U† |g〉 〈e|U] |g〉 〈e|

〉
(90)

Evaluate average in |e〉

G2(τ) = | 〈e|U(τ) |g〉 |2 (91)

hence G2(0) = 0
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The dressed atom model

The dressed atom model

A two level atom coupled to a single mode of the radiation field. Coherent
coupling larger than dissipative process.

An atom in an intense laser field

Cavity quantum electrodynamics

Fruitful to treat atom and mode as a single quantum system. Spontaneous
emission and shifts can be added later as a small perturbation.
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The dressed atom model

The dressed atom model
Hamiltonian

H = Ha + H ′c + Hac (92)

where Ha and H ′c = ~ωcN are the atom and field Hamiltonians. In the
RWA

Hac = −i~Ω0

2

[
aσ+ − a†σ−

]
(93)

where we introduce the ‘vacuum Rabi frequency’ Ω0 (assumed to be real):

Ω0 = 2
dE0ε

∗
d · εc
~

(94)

Atom-field detuning
∆c = ωeg − ωc (95)
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The dressed atom model

The dressed atom model
Uncoupled states

0
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The dressed atom model

The dressed atom model
Eigenenergies and eigenvectors

In the nth doublet
Hn = ~ωc (n + 1/2) 11 + Vn (96)

with:

Vn =
~
2

(
∆c −iΩn

iΩn −∆c

)
=

~
2

[∆cσZ + ΩnσY ] (97)

and
Ωn = Ω0

√
n + 1 (98)
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The dressed atom model

The dressed atom model
Eigenenergies and eigenvectors

Eigenvalues:

E±n = (n + 1/2) ~ωc ±
~
2

√
∆2

c + Ω2
n (99)

with
tan θn = Ωn/∆c (100)

Eigenvectors

|+, n〉 = cos(θn/2) |e, n〉+ i sin(θn/2) |g , n + 1〉
|−, n〉 = sin(θn/2) |e, n〉 − i cos(θn/2) |g , n + 1〉 (101)

The ‘dressed states’.
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The dressed atom model

The dressed atom model
Dressed states

- 3 - 2 - 1 0 1 2 3 4
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The dressed atom model

The dressed atom model
Resonant case: Rabi oscillation

θn = π/2 for all n values.

|±, n〉 = [|e, n〉 ± i |g , n + 1〉] /
√

2 (102)

Initial state |Ψe(0)〉 = |e, n〉
|Ψe(0)〉 = [|+, n〉+ |−, n〉] /

√
2 (103)

Interaction representation with respect to the constant ~ωc(n + 1/2)11. At
time t ∣∣∣Ψ̃e(t)

〉
=
[
|+, n〉 e−iΩnt/2 + |−, n〉 e iΩnt/2

]
/
√

2 (104)

In the uncoupled basis∣∣∣Ψ̃e(t)
〉

= cos
Ωnt

2
|e, n〉+ sin

Ωnt

2
|g , n + 1〉 (105)

For an atom initially in g∣∣∣Ψ̃g (t)
〉

= − sin
Ωnt

2
|e, n〉+ cos

Ωnt

2
|g , n + 1〉 (106)

J.M. Raimond Atoms and photons September 12, 2016 40 / 44



The dressed atom model

The dressed atom model
Non-resonant coupling

Large detuning case (dispersive regime) |∆c | � Ωn

| e , n - 1 ñ

| g , n ñ

| e , n ñ

| g , n + 1 ñ

| + , n ñ

| - , n ñ

| + , n - 1 ñ

| - , n - 1 ñ

w
e g
+ d w

e g w
c
+ d

e
w

c

w
c
+ d

g
w

c
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The dressed atom model

The dressed atom model
Non-resonant coupling

E±n = (n + 1/2) ~ωc ± ~
(

∆c

2
+

Ω2
n

4∆c

)
(107)

∆e,n = ~(n + 1)s0 ; ∆g ,n = −~ns0 (108)

with:

s0 =
Ω2

0

4∆c
(109)

Two complementary effects

Atomic frequency change (light shifts and Lamb shift)

δωeg = (2n + 1)s0 (110)

Atomic state-dependent mode shift (index of refraction effect)

δeωc = s0 (111)

δgωc = −δeωc = −s0 (112)
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The dressed atom model

The dressed atom model
Autler Townes splitting

The large field version of the vacuum Rabi splitting.
Atom driven by an intense laser field resonant on the e/g transition
Two dressed states with a splitting Ω

√
n nearly independent of photon

number n for a large coherent field. Dressed states are superpositions of e
and g with equal weights.
Probe the system on the h to g transition where h is a third level.

For a negligible laser intensity: a single line.

For a strong laser: two lines corresponding to the excitation of the
two dressed levels, separated by the Rabi splitting.
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The dressed atom model

The dressed atom model
Mollow triplet

Fluorescence of the dressed levels in a strong resonant laser field. Rabi
splitting nearly the same for all relevant photon numbers.
Add atomic relaxation by spontaneous emission. Emission possible on all
transitions between the levels
A triplet of lines

Atomic frequency

Sidebands at the Rabi frequencies
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