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Interaction of quantum light with matter

@ Quantum field and classical charges

@ Quantum field and quantized atom
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Interaction Hamiltonians

Quantum field and classical charges

Coupling of a quantum mode with a classical current (model of electronic
source)

i(r,£) = jo(r)e "ot (1)
Simplified field Hamiltonian

Hy =" hwala, (2)
J4

From classical interaction energy, —j - A, guess the interaction Hamiltonian

H; = —/Vj(r, t) - A(r, t) d°r (3)

h
A(r, t) = zg: \/ Seoor) asfy(r) + c.c. (4)
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Interaction Hamiltonians

Quantum field and classical charges

Interaction representation

V)= U ) (5)
with
UO _ —IHOt/h H e—lwgtalag (6)
New Hamiltonian B
H = UlH:Uo (7)
Annihilation operator transformation
EZ — eiwgtaZagaZe—iwztaZag
. iwet)?
= ag—IWgtag—i-( ; ) ag+ ...
= gpe it (8)

using Baker Hausdorff and [Ny, a;] = —
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Interaction Hamiltonians

Quantum field and classical charges

Interaction representation

A= - / P [io(r)e ot + ji(r)e ]

. [Z \/% (aze—,-wetfg(r) + azeiwztfg(l’))] (9)
l

Rotating wave approximation for wy ~ wy:

- W 4 e
H=— iwo—wo)t 4 h e, 1
Zg: 260WJOaEe +h.c (10)

where the complex scalar Jy is defined as:

Jo = %/ d3rj0(r) £ (r) (11)
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Interaction Hamiltonians

Quantum field and classical charges

Single mode evolution

Setting
0%

Ky =
0 2€0w

Jo (12)

we can write the Hamiltonian in the simpler form

H = —Koe al +h.c. (13)

where
d=wy—w (14)

Note that the Hamiltonians at different times do not commute. Evolution
operator not simple.
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Interaction Hamiltonians

Quantum field and classical charges

Single mode evolution

From t to t + dt:

H=—Koe ™®al +h.c. (15)

where
o =it (16)

The evolution operator is then a displacement:

U(t, t + dt) = D(da) (17)
with ”
da = %’e—"“’dt (18)
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Interaction Hamiltonians

Quantum field and classical charges

Single mode evolution

By adding up the amplitudes and within a global phase, the final state is a
coherent state with amplitude

’KO o= idt g Ko 1 __ist
b= / ~ T he [e 1} (19)
@ For § #£ 0, periodic variation of the amplitude
@ Ford=0 »
8= ’—Ot (20)

Linear amplitude and quadratic photon number growth
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Quantum field and quantized atom
Hamiltonians

Hap = —%P~A(0)

or

(21)
Hge = —D - E(0)

(22)
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Interaction Hamiltonians

Quantum field and quantized atom

Electric dipole interaction

Dipole
D = dey|g) (e| + h.c. (23)

Electric field in the plane mode basis

, heo
E0)=i) 4/ 2€0f}ag64 +h.c. (24)
y4

For nearly resonant modes (dominant effect in general), two of the four
terms in D - E(0) can be neglected (RWA approximation)
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Spontaneous emission in free space

Spontaneous emission

Coupling an atom to the continuum of modes in free space. Decay of the
excited states and (diverging) shifts of the energy levels.

o Fermi Golden Rule argument

o Wigner Weisskopf calculation
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Spontaneous emission in free space

Fermi Golden rule

Initial state |e,0). Continuum of final states |g, 1¢). Compute separately
the rate of photon emission in all directions:

M= / drdo (25)

2
ar=%" %| W Rdp(E = huw, dQ) (26)

€
Density of states dp = pd€2/4m where
8T . 5
p(v) = @VV dv (27)

With p(E)dE = p(v)dv for E = hv = hwyg

1O = ot (£ @
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Spontaneous emission in free space

Fermi Golden rule

Finally
V Wi
E= Q)= —-—"2dQ 2
dp(E = huo, dQ) = =5 -0d (29)
Coupling
’W’2:|<g,1£|DE‘e,0> |2 (30)
Without loss of generality
€4 = Uz (31)
2
W = |du, - e ) 2 (32)
2t 260V
We can now evaluate the rate
1w |d\
dr = -0 u; - €;2dQ 33
287[' 60 C3 h ’ ef’ ( )
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Spontaneous emission in free space

Fermi Golden rule

Expand u; on the basis of uy (propagation direction) and two orthogonal
linear polarizations €1 and ey:

(uy-€)?+ (uz-€5)?=1—(uy-u)?>=1—cos?0 =sin 0 (34)

Integration over solid angle:

1 w3 ‘d’2 27 L
M= ! 30 dod 35
8m2eg c3 h /0 /0 sin ¢ (35)
and finally
31412
_ wpd|
~ 3rwohc’ (36)

Already used many times in these lectures!
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Wigner-Weisskopf

A more detailed insight. Atom-field state at time t:
[W(t)) = co(t) |e, 0) + Z a(t) g, 1g) (37)

Schrodinger equation:

dCo

hE = hwoco + ; Vice (38)
ng %
IhE = hwng + Vg 0 (39)
with
Vi =—(e,0|D-E|g,1y) (40)
Interaction representation: '
bz = Cge’wzt (41)
. db@ iw *
ih— =" Vi (42)

J.M. Raimond Atoms and photons September 12, 2016 16 / 44



Wigner-Weisskopf

Formal integration

V* t i ,
by(t) = 2 / co(t)elrt d (43)
ih 0
or
V* t i ,
c(t) = —5/ co(t) et =1) gt/ (44)
ih 0
Setting
Ch=¢€ Motao(t) (45)
We get
dag ’V€|2 iwot ‘ iwe(t' —t) j—iwpt’
?:—Z ?e 0 A e o )e 0 Ck()dt, (46)
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Wigner-Weisskopf

Changing for the variable 7 =t — t/, we get

dao

/ N(m)ao(t — 1) dT (47)

where the integral kernel N is:

1 .
N(r) = 2 Z ‘V£’2el(wo—w)~r (48)
14

2 .
_ laF [Z "y ] (49)

In a time of the order of 1/wg, N practically vanishes
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Wigner-Weisskopf

Thus:

/Ot N(T)a(t — 7) dT =~ ap(t) /OOO N(r)dr = (g + iA) ao(t)  (30)

dOéo r .
— = =+iA 1
ar (2—|—I )ao (5)

o [ spontaneous emission rate
@ A level shift
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Wigner-Weisskopf

Final solution . .
Co(t) _ e—rt/Ze—lwote—lAt (52)
vV, 1— e—rt/2ei(wg—wo—A)t
Cg(t) = - "
ih (M/2) — i(we —wo — A)
2 VPP 1
I (77 E Ty Y

a lorentzian profile for the spontaneous emission line.
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Wigner-Weisskopf

Explicit integration of the kernel:

r . |d[2 2 Twy
A = 2L .
(2+' ) 12 %:(“ 6)2601/

Using

0o 1
/ et dt — wi(t) + PP
0 w

get for the real part:

r— 27|d|?

l

same result as the Fermi Golden Rule.
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i(wo—UJg)T dr

o > (uz )’ 2mv5(wo — wr)
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Spontaneous emission in free space

Wigner-Weisskopf

Level shift

A severe problem

A is divergent

A (not so simple) solution

Renormalization...
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Photodetection

Photodetector model

A simple single system photodetector. A ground state |g) and a
continuum of excited states |e;). Transition to excited state is a click.

Detector Hamiltonian
Hg =Y hwile;) (eil (58)
i
Detector-field interaction —D - E with

D= Z di(ei|g) (eil + €] lei) (gl) (59)

1

Hence, within irrelevant factors

Hi=>Y_ rile) (gl E" +h.c. (60)
i

September 12, 2016 23 / 44



Photodetection

Photodetector model

Interaction representation a; — agexp(—iwyt), |e;) (g| — exp(iw;t) |e;) (g]

Hi=>" kie™*|e;) (g] ET(t) + h.c. (61)
Initial condition
W(0)) = lg) ® [Wr) (62)
State at time t
1 £~ ’ / /
V() = g) @ i)+ 5 [ () V(e) de (63)

First-order perturbative solution by replacing in the r.h.s. |[W(t')) by
W(0)) = lg) @ [Wr).
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Photodetection

Photodetector model

Noting that, in H;, |g) (e;| E~ gives zero on the initial state
V() = lg) @ [Wr) + hZ a| [ atesrEn @) v ole) (60

Probability for having a count at time ¢t

pe = Z (e [W) 2= (W [er) (ei [W) (65)

i

1 t t : / 17"
pe= g I [ [ a e g £ ) ) v
(66)
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Photodetection

Photodetector model

For a high density of final states
S / duop(w) (67)
i

/ dwe™ ' =t") — 75(t' — ) (68)
Hence

pe(t) o /0 di' (We| EZ(t)E* (') |Wy) (69)

With a large set of photo-detecting systems the ‘photocurrent’ is
proportional to

1(t) = (e EZ(E)ET(t) [Wy) (70)
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Photodetection

Intensity correlations

Classical Hanbury-Brown and Twiss

A source, a balanced beamsplitter and two detectors. Correlate the
photocurrents:

Go(7) = h(t)h(t + 1) (71)
At long times, no correlation.
Ga(o0) = (I)? (72)
AtT=0
G2(0) = 12 (73)
P2—(02=(0-12>0 (74)
G2(0) = Ga(o0) (75)
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Photodetection

Intensity correlations
HBT stellar interferometry
Nature paper (178, 1046): determination of the angular diameter of stars.

(a) (b)

J.M. Raimond Atoms and photons September 12, 2016 28 / 44



Photodetection

Intensity correlations
HBT stellar interferometry

Measure the intensity correlations at zero delay as a function of the
distance d. Envelope field received by D;:

E]_ — OéeikrlAeid)A + /Beikrlgei(,‘bg (76)
with
h=|EP=af+ 8P (77)
For D,
E2 — aeikreri¢A + IBeierBei¢B (78)

After a painful computation and elimination (on the average) of random
phases

/1(t)/2(t) = E E-i- |C¥’2|ﬂ|2 cos k [rlA + g — N — r2A] (79)
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Photodetection

Intensity correlations
HBT stellar interferometry

For a symmetric configuration, when A and B are symmetric with respect
to the mediating segment D; — Dy, rna — ha = g — g and

h(t)h(t) = It h+|af?|B|? cos 2k(ria—raa) = h h+|al?|B|? cos 2%(r1A—r2A:
(80)
or
h(t)h(t) = h h + |af?|B[* cos kd® (81)

where © is the star’s angular diameter. Resolution only limited by the
distance between the two detectors.
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Photodetection

Intensity correlations

Quantum intensity correlations

Admit
Gg(rl, ro, t,T) = <\Uf‘ Go ‘\Uf> (82)
where
Gy = E_(rl, t)E_(rz, t+ 7‘)E—"_(I‘27 t+ T)E+(I’1, t) (83)
Normalized correlation function
G
= < 84
&= (84)
September 12, 2016 31 / 44



Photodetection

Intensity correlations

Two field modes
Simple situation: two field modes and two detectors.
Ei+ = S,‘e'(kl.r_w"t)a,' (85)

where | = 1, 2.
Et=E"+Ef (86)
Field state: product of Fock states |W) = | Ny, N»). Complex calculation:
@ No interference in the simple photocurrents

@ Interferences in the g» correlation function

(V| aiazalaz W) +h.c. =
2512522 Ny N>Re [ei[(szkl)'(l‘A*rB)*(wz*M)(tA*tB))] (87)
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Photodetection

Intensity correlations
Single emitter: antibunching
A single atom emitter and compute

G(r,0,r,7) = Ga(7) (88)

Use Heisenberg picture, E™ being proportional to the atomic dipole i.e.

o (7)
Go(7) = (04(0)o+ (7)o (7)o -(0)) (89)

Initially o_(0) = |g) (e| and 04(0) = |e) (g|. At time T,
o+(1) = UloL(0)U and

G2 = (le) (gl [U" e} (g] UIIU"|g) (e] U] Ig) el (90)
Evaluate average in |e)
Go(7) = (el U(7) Ig) P (91)

hence G(0) =0
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The dressed atom model

The dressed atom model

A two level atom coupled to a single mode of the radiation field. Coherent
coupling larger than dissipative process.

@ An atom in an intense laser field
@ Cavity quantum electrodynamics

Fruitful to treat atom and mode as a single quantum system. Spontaneous
emission and shifts can be added later as a small perturbation.
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The dressed atom model

The dressed atom model

Hamiltonian

H= Ha + H:; + Hac (92)

where H, and H. = hw.N are the atom and field Hamiltonians. In the
RWA

S
Hoc = —ih=" [aa+ . aTa_] (93)
where we introduce the ‘vacuum Rabi frequency’ Qg (assumed to be real):
d&o€}; -
Qo = 2720 " €¢ (94)
h

Atom-field detuning

Ar = Weg — we (95)
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The dressed atom model
Uncoupled states
Energy /R

(2n+1)w,/2
le,1)
3,/2 IA'
19:2)
w, e
2 mp e0)
e A
w—w,,/2 $ e lg.1)
0

—wf2 | —— [9,0)
o & = E DA
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The dressed atom model

The dressed atom model

Eigenenergies and eigenvectors

In the nth doublet

Hp=hwe(n+1/2)1+ V, (96)
with: h Q "
_ A -2\ h
and
Qn = Qo\/ n+1 (98)
Sty e 0



The dressed atom model

The dressed atom model

Eigenenergies and eigenvectors

Eigenvalues:
h
Eni:(n+1/2)hwci§,/Ag+Qg (99)
with
tan, = Q,/Ac (100)
Eigenvectors
[+.n) = cos(0n/2) e, n) +isin(0n/2)|g,n+1)
|=n) = sin(0n/2) e, n) —icos(6n/2)|g,n+1) (101)
The ‘dressed states'.
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The dressed atom model

The dressed atom model

Dressed states

Energy

o F = = DA
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The dressed atom model

The dressed atom model
Resonant case: Rabi oscillation
0, = /2 for all n values.

) = [le,n) & i g, n 4+ 1)] /2 (102)
Initial state |W.(0)) = |e, n)
We(0) = [[+,n) + |-, m] /V2 (103)
Interaction representation with respect to the constant hwc(n+ 1/2)1. At
time t B . '
[Be()) = [+, m) et/ 4 |, n) 2] /12 (104)

In the uncoupled basis

~ Qut Qut
‘\Ue(t)> = cos =" [en) +sin 7= |g.n+1) (105)
For an atom initially in g
~ Qnt Qut
‘\Ug(t)> = —sin - le, n) + cos > lg,n+1) (106)
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The dressed atom model

The dressed atom model
Non-resonant coupling
Large detuning case (dispersive regime) |A| > Q,
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The dressed atom model

The dressed atom model

Non-resonant coupling

A 92
E 1/2)hwe £ h | — L
Aep=n(n+1)sp ; Ag.n = —hnsp
with: )
S0 = QO
4A

Two complementary effects
e Atomic frequency change (light shifts and Lamb shift)

dweg = (2n+1)sp
o Atomic state-dependent mode shift (index of refraction effect)
dewe = So
dgwe = —dewe = —5p
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The dressed atom model

The dressed atom model
Autler Townes splitting

The large field version of the vacuum Rabi splitting.
Atom driven by an intense laser field resonant on the e/g transition
Two dressed states with a splitting 24/n nearly independent of photon

number n for a large coherent field. Dressed states are superpositions of e
and g with equal weights.

Probe the system on the h to g transition where h is a third level.
@ For a negligible laser intensity: a single line.

@ For a strong laser: two lines corresponding to the excitation of the
two dressed levels, separated by the Rabi splitting.
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The dressed atom model

The dressed atom model
Mollow triplet

Fluorescence of the dressed levels in a strong resonant laser field. Rabi
splitting nearly the same for all relevant photon numbers.
Add atomic relaxation by spontaneous emission. Emission possible on all

transitions between the levels
A triplet of lines

@ Atomic frequency
@ Sidebands at the Rabi frequencies
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