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Introduction

Introduction

The fundamental importance of the atom-field interaction problem

Provides all information we have on the universe

Provides the most precise theory so far: QED

Provides the best tests of fundamental quantum physics
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Introduction

Introduction

The practical importance of the atom-field interaction problem

Lasers

Atomic clocks

Cold atoms and BEC

Quantum simulation
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Introduction

Outline of this course

Chapter 1: Interaction of atoms with a classical field

1 The harmonically bound electron: a surprisingly successful model

2 The Einstein coefficients
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Introduction

Outline of this course

Chapter 2: Quantized atom and classical field

1 Interaction Hamiltonian

2 Free atom and resonant field

3 Relaxing atom and resonant field

4 Optical Bloch equations

5 Applications of the optical Bloch equations
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Introduction

Outline of this course

Chapter 3: Field quantization

1 Field eigenmodes

2 Quantization

3 Field quantum states

4 Field relaxation
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Introduction

Outline of this course

Chapter 4: quantized matter and quantized field

1 Interaction Hamiltonian

2 Spontaneous emission

3 Photodetection

4 The dressed atom

5 Cavity Quantum electrodynamics
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Introduction

Online lecture notes

www.cqed.org, following the menu items ‘teaching’, ‘Jean-Michel
Raimond’

http://www.lkb.upmc.fr/cqed/teachingjmr/
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The harmonically bound electron

A classical model: the harmonically bound electron

The simplest classical model for an atom: a single charge (electron) bound
to a force center by an harmonic potential.

An early atomic theory model (Thomson’s ‘plum pudding’)

A good guide to identify relevant parameters by dimensional analysis

Surprisingly accurate predictions
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The harmonically bound electron

A classical model: the harmonically bound electron
Equations of motion

Dynamics

d2r

dt2
+ ω2

0r = 0 (1)

Solution

r = r0 exp(−iω0t) (2)
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The harmonically bound electron

A classical model: the harmonically bound electron
Equations of motion

Damping: radiation reaction. Model emitted power by a viscous damping
term in the equation of motion. A reasonable approximation for weak
damping.

Larmor formula for radiated power

P =
q2a2

6πε0c3
= mτa2 (3)

where

τ =
1

6πε0

q2

mc3
= 6.32 10−24 s (4)

linked to the classical radius of electron re = q2

4πε0mc2 = 3. 10−15 m by

re = 3
2cτ
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The harmonically bound electron

A classical model: the harmonically bound electron
Equations of motion

Modified equation of motion

d2r

dt2
+ γ

dr

dt
+ ω2

0r = 0 (5)

with
γ = ω2

0τ (6)

being the amplitude damping coefficient obtained by equalling the average
dissipated energy to the average radiated power (the energy damping
coefficient is obviously 2γ).
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The harmonically bound electron

A classical model: the harmonically bound electron
Equations of motion

Order of magnitude estimate for γ:
ω0 ≈ Ry/~, where R = mc2α2/2 is the Rydberg constant and

α =
q2

4πε0~c
≈ 1

137
(7)

the fine structure constant. Then

γ

ω0
= ω0τ =

Rτ

~
=

R

~
1

6πε0

q2

mc3
=
α3

3
≈ 1.3 10−7 (8)
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The harmonically bound electron

A classical model: the harmonically bound electron
Polarizability

Response to a classical oscillating field E0uz exp(−iωt)

Equation of motion

d2r

dt2
+ γ

dr

dt
+ ω2

0r =
qE0

m
uze
−iωt (9)

Steady-state solution

Position: r = r0 exp(−iωt); Dipole: d = d0 exp(−iωt) with

d0 = qr0 = ε0αcE0uz (10)

where

αc =
q2

mε0

1

ω2
0 − ω2 − iγω

(11)
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The harmonically bound electron

A classical model: the harmonically bound electron
Diffusion

Total power diffused by the atom given by Larmor formula:

P =
1

2
mτω4|r0|2 (12)

or
P =

ε0

12πc3
|αc |2ω4E 2

0 (13)

Cross Section

Ratio of this power to the incident power per unit surface Pi = ε0cE
2
0 /2:

σc =
1

6π

(ω
c

)4
|αc |2 =

8π

3
r2
e

ω4

(ω2
0 − ω2)2 + γ2ω2

(14)
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The harmonically bound electron

A classical model: the harmonically bound electron
The three diffusion regimes

Rayleigh diffusion for ω < ω0 and ω0 − ω � γ

σc =
8π

3
r2
e

ω4

ω4
0

(15)

Blue sky: σc ≈ 10−30 m2, N = 1025 m−3: the attenuation length is
L = 1/Nσc ≈ 100 km

Thomson diffusion for ω > ω0

σc =
8π

3
r2
e . (16)

The resonant regime for ω ≈ ω0

σc =
8π

3
r2
e

ω2
0

4(ω0 − ω)2 + γ2
(17)
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The harmonically bound electron

A classical model: the harmonically bound electron
Resonant diffusion

At exact resonance ω0 = ω:

σc =
8π

3
r2
e

ω2
0

γ2
(18)

With

re
ω0

γ
=

3

2
cτ

1

ω0τ
=

3

4π
λ0 (19)

where λ0 = 2πc/ω0 is the wavelength. Hence

σc =
3

2π
λ2

0 (20)

This model doe not apply for high powers: saturation (about 1 mW/cm2).
A quantum effect. More on that in next Chapter.
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The harmonically bound electron

A classical model: the harmonically bound electron
Propagation in matter

Apply the model to propagation in matter. Simplifiying hypothesis:

Consider harmonic plane wave

Linear response theory

Dilute matter: no difference between local and global field

Equation of propagation

∆E +
ω2

c2
εrE = 0 (21)

with εr = 1 + Nαc

Dispersion relation

k2 = k2
0 εr (22)

where k0 = ω/c
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The harmonically bound electron

A classical model: the harmonically bound electron
Propagation in matter

Refraction index n =
√
εr = n′ + in′′

n′ =
1√
2

√
ε′r +

√
ε′2r + ε′′2r and n′′ =

ε′′r√
2

1√
ε′r +

√
ε′2r + ε′′2r

(23)

Real part: refraction (ordinary index), Imaginary part: absorption.
Power released in matter 1

2 Re j0 · E0∗ where j0 = −iωP0.

E =
1

2
Re (−iωP0 · E∗0) (24)

E =
1

2
ε0ωχ

′′|E0|2 =
1

2
ε0ωNα

′′|E0|2 (25)
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The harmonically bound electron

A classical model: the harmonically bound electron
Propagation in matter

E =
1

2
ε0ωχ

′′|E0|2 =
1

2
ε0ωNα

′′|E0|2 (26)

Imaginary part of polarizability:

α′′ =
q2

mε0

γω

(ω2
0 − ω2)2 + γ2ω2

(27)

Power released always positive, matter always absorbing. Laser needs a
quantum ingredient
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Einstein’s coefficients

Einstein’s coefficents
Introduction

A phenomenological description of energy exchanges between light and
matter. A very simple description:

Field only described by its spectral energy density uν . Numerical
density of photons between ν and ν + dν : uν/hν. Total energy per
unit volume: u =

∫
uν dν

Matter made of two-level atoms e above g energies Ee and Eg . No
degeneracy. (Ee − Eg )/h = ν0. Transition wavelength λ0 = c/ν0.

Number (or density) of atoms in the two levels Ne and Ng , normalized
to the total atom number (or density N ) so that Ne + Ng = 1.

Goal: obtain rate equations for the variations of Ne and uν . We shall
consider in particular the radiation/matter thermal equilibrium at a
temperature T . For that, three process come into play:
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Einstein’s coefficients

Einstein’s coefficents
Three processs

Spontaneous emission

Deexcitation of e with a constant probability per unit time, Aeg = Γ.

dNe

dt

)
spon

= −AegNe (28)

Absorption

Transfer from g to e by absorption of photons. Rate proportional to the
photon density (a cross-section approach).

dNe

dt

)
abs

= Bgeuν0Ng (29)
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Einstein’s coefficients

Einstein’s coefficents
Something is lacking

Absorption and spontaneous emission are not enough. At infinite
temperature, all atoms in the upper state. Not the prediction of
thermodynamics (50% in each state). Einstein adds a third process:

Stimulated emission

Transition from e to g and emission of a photon at a rate proportional to
the photon density.

dNe

dt

)
stim

= −Beguν0Ne (30)

Einstein’s rate equations

dNe

dt
= −AegNe − Beguν0Ne + Bgeuν0Ng (31)
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Einstein’s coefficients

Einstein’s coefficents
Relations between the three coefficients

At thermal equilibrium (temperature T )

Ne

Ng
= e(Eg−Ee)/kbT = e−hν0/kbT (32)

kb: Boltzmann constant. And (Planck’s law)

uν0 =
8πhν0

3

c3

1

exp(hν0/kbT )− 1
(33)
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Einstein’s coefficients

Einstein’s coefficents
Relations between the three coefficients

Steady state for T →∞ i.e. uν0 →∞ and Ne/Ng → 1. Neglect
spontaneous emission.

Bge = Beg = B (34)

Noting Aeg = A, steady state at a finite temperature T :

A + Buν0 = Buν0e
hν0/kbT (35)

Hence

uν0 =
A

B

1

exp(hν0/kbT )− 1
(36)

Comparing with Planck’s law

A

B
=

8πhν0
3

c3
=

8πh

λ3
0

(37)
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Einstein’s coefficients

Einstein’s coefficents
Case of degenerate atomic levels

ge and gg degeneracies of energies Ee and Eg . At thermal equilibrium

Ne/Ng = (ge/gg ) exp(−hν0/kbT ) (38)

From the infinite temperature limit:

Bge/Beg = ge/gg (39)

A purely algebraic complication, not to be considered any further here.
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Einstein’s coefficients

The Laser
Light Amplification

Stimulated emission: addition of energy to the incoming wave.
A simple situation: plane wave at frequency ν0 on a thin slice of atoms.
Incoming power per unit surface P, outgoing P + dP. Obviously:

dP ∝ P(Ne − Ng ) = P D (40)

where we define the population inversion density:

D = Ne − Ng (41)

The power increases when D > 0: gain when population inversion
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Einstein’s coefficients

The Laser
Population inversion

Conditions to achieve D > 0

No thermal equilibrium

No two-level system (in the steady state)

Three or four level system

Case of a four level system (f : ground state, i intermediate, plus e
and g :

I Fast incoherent pumping from f to i
I Fast relaxation from i to e
I Stimulated emission from e to g
I Extremely fast relaxation from g to f
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Einstein’s coefficients

The Laser
Principle

Gain + feedback = oscillation

A laser is composed of an amplifying medium (gain) and of an optical
resonant cavity (feedback).

When the gain exceeds the losses in the feedback, a self-sustained
steady-state oscillation occurs.
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Einstein’s coefficients

The Laser
A simple model

Catpures the main physical ideas without any complication. Forget about
all details and proportionality constants.

Variables

Population inversion density D. If g strongly damped, D = Ne .

Intra-cavity intensity I (photon density)

Evolution of intensity

dI

dt
= −κI + gID (42)

κ: rate of internal or coupling cavity losses.
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Einstein’s coefficients

The Laser
A simple model

Evolution of population inversion

dD

dt
= Λ− ΓD − gID (43)

with

Λ : pumping rate in the upper level e

Γ : relaxation rate of e (spontaneous emission in modes other than
the cavity one, other sources of atomic losses)
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Einstein’s coefficients

The Laser
Steady state

Laser off solution

I = 0 always a solution

D = Λ/Γ

Laser on solution

D = κ/g

I =
1

κ

(
Λ− Γκ

g

)
(44)

Relevant if I ≥ 0

Λ ≥ Λt =
Γκ

g
(45)

Threshold condition
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Einstein’s coefficients

The Laser
Steady state

Stability of the solutions:

Λ < Λt : only solution I = 0

Λ ≥ Λt : two possible solutions, but I = 0 unstable
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Einstein’s coefficients

The Laser
Main properties of laser radiation

Directive

Intense

Narrow band and extremely long coherence length or...

Extremely short pulses (as)
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