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Interaction Hamiltonian

Interaction Hamiltonian

We consider a single electron atom (Hydrogen). The free Hamiltonian is:

H0 =
P2

2m
+ qU(R) (1)

P and R: momentum and position operators. Eigenstates H0 |i〉 = Ei |i〉,
ground state |g〉
Atom in a radiation field (potential vector A(r, t), scalar potential V(r, t)):

H =
1

2m
(P− qA(R, t))2 + qU(R) + qV (R) (2)

Note that A(R, t) is an operator in the electron’s Hilbert space.
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Interaction Hamiltonian

Interaction Hamiltonian
Gauge choice

Gauge transformation

A′ → A = A′ + ∇χ(r, t)

V ′ → V = V ′ − ∂χ

∂t
(3)

where χ is an arbitrary function of space and time.

Coulomb gauge

∇ · A = 0 (4)
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Interaction Hamiltonian

Interaction Hamiltonian
Fourier space

Space-time Fourier transform

A(r, t) =
1

4π2

∫
A(k, ω)e i(k·r−ωt) dkdω (5)

Longitudinal and transverse potentials w.r.t. k:

A(k, ω) = A‖ + A⊥ (6)

Hence:
A(k, ω) = A‖ + A⊥ (7)

Space-time Fourier transform of ∇ · A: ik ·A. Coulomb:

A‖ = A‖ = 0 (8)
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Interaction Hamiltonian

Interaction Hamiltonian
Fourier space

Same decomposition for fields. Transverse electric field, since
divergence-free as A in the Coulomb gauge. With

E = −∂A
∂t
−∇V (9)

and the fact that ∇V is longitudinal (proportional to k in Fourier space)

∇V = 0 (10)

and (no physical effect of a constant potential)

V = 0 (11)
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Interaction Hamiltonian

Interaction Hamiltonian
A · P interaction

Expansion of (P− qA(R, t))2 taking care of the commutation of P with
A. Noting:

[Pi , f (R)] = −i~ ∂f
∂Ri

i ∈ {x , y , z} (12)∑
i

[Pi ,Ai ] = −i~
∑

i

∂Ai

∂Ri
= −i~∇ · A = 0 (13)

P · A =
∑

i

PiAi =
∑

i

AiPi = A · P (14)

And finally

H =
P2

2m
+ qU(R)− q

m
P · A +

q2

2m
A · A (15)

Weak fields (much lower than atomic field unit, 1011 V/m), A · A
quadratic term negligible compared to first order contribution.

H = H0 −
q

m
P · A(R, t) . (16)
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Interaction Hamiltonian

Interaction Hamiltonian
A · P interaction: dipole approximation

Radiation wavelength: about 1 µm

Atomic size: about 100 pm

Neglect spatial variation of the vector potential across atomic orbit:
A(R, t) = A(0, t)

H = H0 −
q

m
P · A(0, t) , (17)

Useful, but not the intuitive form for the interaction of a dipole with a
field.
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Interaction Hamiltonian

Interaction Hamiltonian
D · E interaction

Cast the interaction Hamiltonian in the more familiar form −d · E
(interaction energy of a dipole with a field, manifestly independent of the
gauge choice). Two possible (and equivalent) approaches

1 The Göppert-Mayer transformation

2 Unitary transformation on the Hilbert space
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Interaction Hamiltonian

Interaction Hamiltonian
The Göppert-Mayer transformation

Restart from full Hamiltonian

H =
1

2m
(P− qA(R, t))2 + qU(R) + qV (R) (18)

and perform dipole approximation first. For the vector potential

A(R, t) = A(0, t) (19)

and (keeping first order)

V = V (0, t) + R ·∇V (0, t) (20)

The space-independent term in V has no effect

H = H0 −
q

m
P · A(0, t) + D ·∇V (21)

with
D = qR (22)
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Interaction Hamiltonian

Interaction Hamiltonian
The Göppert-Mayer transformation

Perform a gauge transformation:

A → A′ = A + ∇χ(r, t)

V → V ′ = V − ∂χ

∂t
(23)

and choose
χ(r, t) = −r · A(0, t) (24)

so that A′(0, t) = 0. Then

V ′ = V + r · ∂A(0, t)

∂t
(25)

∇V ′(0) = ∇V (0) +
∂A(0, t)

∂t
= −E(0) (26)

H = H0 −D · E(0) (27)
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Interaction Hamiltonian

Interaction Hamiltonian
Unitary transform approach

Restart from full Hamiltonian

H =
1

2m
(P− qA(R, t))2 + qU(R) + qV (R) (28)

Switch to Coulomb gauge (no V contribution left) and perform dipole
approximation A(r, t) = A(0, t)

H =
1

2m
(P− qA(0, t))2 + qU(R) (29)

Unitary transform |Ψ〉 →
∣∣∣Ψ̃〉 = T |Ψ〉 (T †T = 11). Transformed

Hamiltonian

H̃ = THT † + i~
dT

dt
T † (30)
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Interaction Hamiltonian

Interaction Hamiltonian
Unitary transform approach

Choose T as a time-dependent translation of the momentum:

TPT † = P + qA(0, t) (31)

T = e−
i
~qR·A(0,t) = e−

i
~D·A(0,t) (32)

Hence
T (P− qA(0, t))2 T † = P2 (33)

and

i~
dT

dt
T † = D · dA(0,T )

dt
= −D · E(0, t) (34)

Finally,
H̃ = H0 −D · E(0) (35)
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Interaction Hamiltonian

Interaction Hamiltonian
Unitary transform approach

We get a transformed Hamiltonian in the D · E form, with a linear
atom-field coupling.
We have not performed the weak field approximation to remove the A · A
term in the Hamiltonian. Where is the magic?
The observables of the electron should be changed

O → TOT † (36)

and this change contains non linear terms in A. It is only for weak fields
that these terms can be neglected.
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Non-resonant interaction: perturbative approach

Non-resonant interaction

A simple situation:

An atom initially in the ground state

A weak non-resonant field so that the atom is always nearly in its
ground state

A perturbative solution to the Schrödinger equation

Recover, mutatis mutantis, all the results of the previous chapter with the
harmonically bound electron model
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Model

Incoming plane wave:
E(0, t) = E0uz cosωt (37)

Hamiltonian
H = H0 + H1 (38)

with
H1 = −qZE0 cosωt (39)

Interaction representation w.r.t. H0

H̃ = U†0H1U0 with U0 = exp(−iH0t/~) (40)
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Model

Expansion of the wave function over the eigenstates of H0:∣∣∣Ψ̃〉 =
∑

j

βj |j〉 (41)

Injection in the Schrödinger equation and scalar product with 〈k |

i~
dβk

dt
=
∑

j

〈k|U†0H1U0 |j〉βj (42)

With U0 |j〉 = exp(−iωj t) |j〉, ωj = Ej/~ and ωkj = ωk − ωj (Bohr
frequency)

dβk

dt
= −qE0

i~
∑

j

e iωkj t 〈k|Z |j〉βj cosωt (43)

Set of coupled first-order differential equations
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Perturbative solution

Weak, non-resonant field. The atom is nearly in its ground state. Replace
βg by one (and all others by zero) in the r.h.s of the system

dβk

dt
≈ −qE0

i~
e iωkg t 〈k|Z |g〉 cosωt (44)

with the explicit solution

βk (t) =
qE0

2~
〈k |Z |g〉

[
e i(ωkg +ω)t − 1

ωkg + ω
+

e i(ωkg−ω)t − 1

ωkg − ω

]
(45)

Resonances (and divergences) as expected at ω = ±ωkg when 〈k|Z |g〉
does not vanish (selection rules). To compute the dipole, we return to the
initial representation

|Ψ〉 =
∑

k

βke
−iωk t |k〉 (46)
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Comparison with classical model

Average dipole D = qZuz = Duz (to be compared with the classical
dipole)

〈D〉 =
∑
`,k

β∗`βke
−iωk`t 〈`| qZ |k〉 (47)

Keeping only the first-order terms in the small βk , k 6= g , amplitudes

〈D〉 =
∑

k

βke
−iωkg t 〈g | qZ |k〉+ c.c. (48)

〈D〉 =
q2E0

2~
∑

k

| 〈g |Z |k〉 |2
[
e iωt − e−iωkg t

ωkg + ω
+

e−iωt − e−iωkg t

ωkg − ω
+ c.c.

]
(49)
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Comparison with classical model

Dipole contains terms oscillating permanently at the Bohr frequencies.
They are an artifact of the model (transients damped in a more realistic
model)

〈D〉 =
q2E0

2~
∑

k

| 〈g |Z |k〉 |2
[

e iωt

ωkg + ω
+

e−iωt

ωkg − ω
+ c.c.

]
(50)

Real quantum polarizability:

〈D〉 = ε0αQ(ω)E0 cosωt (51)

αQ(ω) =
2q2

~ε0

∑
k

| 〈g |Z |k〉 |2
ωkg

ω2
kg − ω2

(52)
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Comparison with classical model

Classical polarizability (ω0: resonance frequency)

αc (ω, ω0) =
q2

mε0

1

ω2
0 − ω2

(53)

Hence
αQ(ω) =

∑
k

fkgαc (ω, ωkg ) (54)

with

fkg =
2mωkg

~
| 〈g |Z |k〉 |2 (55)

being the (real) oscillator strength
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Oscillator strength sum rule

Rewrite

fkg =
2mωkg

~
〈g |Z |k〉 〈k |Z |g〉 (56)

Noting

[Z ,H0] =
i~
m
Pz , (57)

〈k |Pz |g〉 =
m

i~
〈k |ZH0 − H0Z |g〉 = −

mωkg

i
〈k |Z |g〉 (58)

Hence

fkg =
2

i~
〈g |Z |k〉 〈k |Pz |g〉 (59)
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Oscillator strength sum rule

Summing over k introduces a closure relation∑
k

fkg =
2

i~
〈g |ZPz |g〉 (60)

fkg being real, the r.h.s is equal to the half sum with its conjugate∑
k

fkg =
1

i~
〈g |ZPz − PzZ |g〉 = 1 (61)

A simple sum rule for the oscillator strengths
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Non-resonant interaction: perturbative approach

Non-resonant interaction
Comparison with classical model

In this picture, an atomic medium of numeric density N appears a a
mixture of classical harmonically bound electrons with resonance
frequencies ωkg and densities Nfkg . All our conclusions on the propagation
of light in the classical medium thus retain their validity in this
perturbative semi-classical model. This property explains why the naive
harmonically bound electron leads to realistic predictions.
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Classical field and free atom

A two-level system

Consider now the case of a radiation resonant on the transition between
between the two levels |g〉 (lower, possibly ground level) and |e〉 i.e.

ω0 = ωeg

All other levels can be neglected. Boils down to the interaction of a
classical field with a spin 1/2 system.
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Classical field and free atom

Classical field and free atom
Atomic system

Two states |e〉 and |g〉 or |+〉 and |−〉 or |0〉 and |1〉 in quantum
information science.
Operator basis set: Pauli operators

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(62)

[σx , σy ] = 2iσz (63)

Spin lowering and raising operators

σ+ = |+〉 〈−| =
σx + iσy

2
=

(
0 1
0 0

)
(64)

σ− = |−〉 〈+| = σ†+ =
σx − iσy

2
=

(
0 0
1 0

)
(65)

[σz , σ±] = ±2σ± (66)
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Classical field and free atom

Classical field and free atom
Atomic system

Most general observable σu with u = (sin θ cosφ, sin θ sinφ, cos θ)

σu =

(
cos θ sin θe−iφ

sin θe iφ − cos θ

)
(67)

Eigenvectors

|+u〉 = |0u〉 = cos
θ

2
|+〉+ sin

θ

2
e iφ |−〉 (68)

|−u〉 = |1u〉 = − sin
θ

2
e−iφ |+〉+ cos

θ

2
|−〉 (69)
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Classical field and free atom

Classical field and free atom
Atomic system

Bloch sphere

|0ñ

X

Y

Z

f

|1ñ

|0Xñ

q

|0
u
ñ

u

|0Yñ
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Classical field and free atom

Classical field and free atom
Atomic system

Rotation on the Bloch sphere by an angle θ around the axis defined by v

Rv(θ) = e−i(θ/2)σv = cos
θ

2
11− i sin

θ

2
σv (70)

e.g. angle θ around uz

Rz (θ) =

(
e−iθ/2 0

0 e iθ/2

)
(71)

with Rz (π/2) |+x〉 = |+y 〉 and Rv(2π) = −11
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Classical field and free atom

Classical field and free atom
Atomic Hamiltonian and observables

Hamiltonian:

H0 =
~ωeg

2
σz (72)

Generates a rotation of the Bloch vector at angular frequency ωeg

around Oz (Larmor precession in the NMR context).

Dipole operator:

D =

(
0 d
d∗ 0

)
= dσx = d(σ+ + σ−) (73)

where d describes the polarization of the atomic transition. A priori
complex, but taken as real for the sake of simplicity.

Incoming field E(0, t) = E0 cos(ωt + ϕ). We note

E1 = E0e
−iϕ (74)
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Classical field and free atom

Classical field and free atom
Atomic Hamiltonian and observables

Atom-field Hamiltonian:

H1 = −d · E0 cos(ωt + ϕ)σx (75)

H1 = −~Ω cos(ωt + ϕ)σx (76)

with definition of the ‘Rabi frequency’

Ω =
d · E0

~
(77)

Remove time dependence?
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Classical field and free atom

Classical field and free atom
Rabi precession

Introduce H ′0 = ~ωσz/2 (inducing a spin precession at the field frequency)
so that

H = H ′0 +
~∆

2
σz + H1 (78)

with
∆ = ωeg − ω , (79)

Interaction representation w.r.t. H ′0, defined by U ′0 = exp(−iH ′0t/~).

H̃ = U ′
†
0H1U

′
0 (80)

σz part of H1 unchanged (commutes with the evolution operator) but

σ̃± = U ′
†
0σ±U

′
0 (81)
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Classical field and free atom

Classical field and free atom
Rabi precession

Using the Baker-Hausdorff lemma:

eBAe−B = A + [B,A] +
1

2!
[B, [B,A]] + . . . (82)

with B ∝ σz and σ+ = A

σ̃+ = σ+ + iωtσ+ + (iωt)2σ+ + · · · = e iωtσ+ (83)

and, by hermitic conjugation

σ̃− = e−iωtσ− (84)

H̃ =
~∆

2
σz −

~Ω

2

(
e i(ωt+ϕ) + e−i(ωt+ϕ)

) (
e iωtσ+ + e−iωtσ−

)
(85)

Two rapidly oscillating terms, and two constant ones.
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Classical field and free atom

Classical field and free atom
Rabi precession

Rotating wave approximation (RWA): neglect terms oscillating rapidly in H̃

H̃ =
~∆

2
σz −

~Ω

2

(
σ+e

−iϕ + σ−e
iϕ
)

=
~∆

2
σz −

~Ω

2
(σx cosϕ+ σy sinϕ)

(86)

H =
~Ω′

2
σn (87)

with

n =
∆uz − Ω cosϕux − Ω sinϕuy

Ω′
(88)

and
Ω′ =

√
Ω2 + ∆2 (89)

Hence,
U(t) = e−i(Ω′t/2)σn = Rn(θ) (90)

with
θ = Ω′t (91)
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Classical field and free atom

Classical field and free atom
Rabi precession

Resonant case: rotation around an axis in the equatorial plane
n = − cosϕux − sinϕuy . Choosing g as the initial state

pe(t) =
1− cos(Ωt)

2
(92)

Rabi oscillation. Some particular pulses:

‘π/2 pulse’, i.e. t = π/2Ω. Evolution operator

Rn(π/2) =
1√
2

(11− iσn) =
1√
2

(
1 ie−iϕ

ie iϕ 1

)
(93)

|g〉 −→ 1√
2

(
|g〉+ ie−iϕ |e〉

)
|e〉 −→ 1√

2

(
|e〉+ ie iϕ |g〉

)
(94)
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Classical field and free atom

Classical field and free atom
Rabi precession

Ωt = π (π-pulse) exchange of levels

Ωt = 2π (2π pulse) global − sign associated to a 2π rotation of a
spin-1/2.

General case: rotation is around an axis making a non-trivial angle α
(given by tanα = Ω′/∆) with the downwards z axis. When starting from
|g〉 the maximum excitation probability is

pe,m =
Ω2

Ω2 + ∆2
(95)

Lorentzian resonance

Width of order of π/τ for a given interrogation time τ

(no limit to the spectroscopic resolution since relaxation processes are not
taken into account)
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Classical field and free atom

Classical field and free atom
Ramsey separated oscillatory fields method

Two short π/2 quasi-resonant pulses separated by a long time interval T .
Assume ϕ = −π/2. The pulses induce the transformations:

|e〉 −→ 1√
2

(|e〉+ |g〉) (96)

|g〉 −→ 1√
2

(− |e〉+ |g〉) (97)

Starting from |g〉, after pulse 1, atom is in state
|Ψ(τ)〉 = (1/

√
2)(− |e〉+ |g〉).
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Classical field and free atom

Classical field and free atom
Ramsey separated oscillatory fields method

During time T , the atom evolves under the Hamiltonian (~∆/2)σz and
hence |e〉 → exp(−iΦ/2) |e〉 and |g〉 → exp(iΦ/2) |g〉, with Φ = ∆t.
State immediately before pulse 2, within an irrelevant global phase:

|Ψ(T )〉 =
1√
2

(
− |e〉+ e iΦ |g〉

)
(98)

Final state

|Ψf 〉 = −1

2

[(
1 + e iΦ

)
|e〉+

(
1− e iΦ

)
|g〉
)

(99)

pe =
1

4

(
1 + e iΦ

)2
=

1

2
(1 + cos ∆T ) (100)

(note that pe = 1 for ∆ = 0: addition of two in-phase π/2 pulses).
Measurement of pe provides a spectroscopic resolution of the order of 1/T .
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Classical field and free atom

Classical field and free atom
Ramsey separated oscillatory fields method

Signal to noise discussion: N independent atoms undergoing the same
Ramsey sequence

〈Ne〉 =
N

2
(1 + cos Φ) (101)

with Φ = ∆T . Variance

∆2Ne = Npe(1− pe) =
N

4
sin2 Φ (102)

and hence

∆Ne =

√
N

2
sin Φ (103)

Two measurements for ∆ and ∆ + δ, with δ � 1/T .

〈Ne(∆ + δ)〉 = 〈Ne(∆)〉 − NT

2
δ sin ∆T (104)
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Classical field and free atom

Classical field and free atom
Ramsey separated oscillatory fields method

Resolve the small detuning increment δ if

NT

2
δ sin ∆T >

√
2

sin ∆T

2

√
N (105)

or

δ >

√
2

T
√
N

(106)

A more precise estimate of the spectroscopic sensitivity of the method.
Amusingly independent of the interferometer phase. Ranges as

√
N as

expected for independent measurements.
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Atomic relaxation

Atomic relaxation

Take into account spontaneous emission

Take into account all other sources of damping

Take into account fluctuating fields acting on the atom

An opportunity to introduce the formal treatment of relaxation in
quantum mechanics in a rather general frame: the Kraus operators
and the Lindblad master equation
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Atomic relaxation

Atomic relaxation
System and environment

Quantum system S (the atom here) coupled to an environment E .
Jointly in a pure state |ΨSE〉.
We are interested only in ρS , obtained by tracing the projector
|ΨSE〉 〈ΨSE | over the environment (the state of the environment is
forever inaccessible).

We seek an evolution equation for ρS alone.
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Atomic relaxation

Atomic relaxation
Kraus operators

Transformation of the system’s density matrix during a short time
interval

ρ(t) −→ ρ(t + τ) (107)

τ � τc , correlation time of the reservoir observables, so that there are
no coherent effects in the system-reservoir interaction

This transformation is a ‘quantum map’

L(ρ(t)) = ρ(T + τ) (108)
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Atomic relaxation

Atomic relaxation
Kraus operators

Mathematical properties of a proper quantum map:

Linear operation, i.e. a super-operator in a space of dimension N2
S

(NS system’s Hilbert space dimension).

Preserve unit trace and positivity (a density operator does not have
any negative eigenvalue).

“Completely positive”. If, at a time t, S entangled with S ′, L acting
on S alone leads to a completely positive density operator for the
joint state of S and S ′ (not all maps are completely positive e.g.
partial transpose).
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Atomic relaxation

Atomic relaxation
Kraus operators

Any completely positive map can be written as

L(ρ) =
∑
µ

MµρM
†
µ (109)

with the normalization condition∑
µ

M†µMµ = 11 (110)

There are at most N2
S ‘Kraus’ operators Mµ, which are not uniquely

defined (same map when mixing the Mµ by a linear unitary matrix V :
M ′µ = V µνMν).
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Atomic relaxation

Atomic relaxation
Kraus operators

Fit also in this representation:

Hamiltonian evolution

ρ(t + τ) = U(τ)ρU†(τ) (111)

‘unread’ generalized measurement

ρ −→
∑
µ

OµρO
†
µ (112)

but not a measurement whose result µ is known

ρ −→ OµρO
†
µ

Tr(OµρO
†
µ)

(113)

(non-linear normalization term in the denominator)

J.M. Raimond Atoms and photons September 12, 2016 46 / 112



Atomic relaxation

Atomic relaxation
Lindblad equation

Kraus representation and differential representation of the map

ρ(t + τ) =
∑
µ

MµρM
†
µ ≈ ρ(t) +

dρ

dt
τ (114)

Environment unaffected by the system: the Mµs do not depend upon
time t.

They, however, depend clearly upon the tiny time interval τ .

One and only one of the Mµs is thus of the order of unity and all
others must then be of order

√
τ .

M0 = 11− iKτ (115)

Mµ =
√
τLµ forµ 6= 0 (116)
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Atomic relaxation

Atomic relaxation
Lindblad equation

K , having no particular properties, can be split in hermitian and
anti-hermitian parts:

K =
H

~
− iJ , (117)

where

H =
~
2

(
K + K †

)
(118)

J =
i

2

(
K − K †

)
(119)

are both hermitian.

M0 = 11− iτ

~
H − Jτ (120)
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Atomic relaxation

Atomic relaxation
Lindblad equation

Thus

M0ρM
†
0 = ρ− iτ

~
[H, ρ]− τ [J, ρ]+ (121)

where [J, ρ]+ = Jρ+ ρJ is an anti-commutator.

M†0M0 = 11−2Jτ and thus, by normalization since
∑
µ

M†µMµ = 11 (122)

J =
1

2

∑
µ6=0

L†µLµ (123)

“Lindblad form” of the master equation

dρ

dt
= − i

~
[H, ρ] +

∑
µ 6=0

(
LµρL

†
µ −

1

2
L†µLµρ−

1

2
ρL†µLµ

)
(124)
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Atomic relaxation

Atomic relaxation
Quantum jumps

Consider a single time interval τ in the simple situation where the initial
state is pure ρ(0) = |Ψ〉 〈Ψ|, with no Hamiltonian evolution. Then

ρ(τ) = |Ψ〉 〈Ψ|+ τ
∑
µ

(Lµ |Ψ〉)
(
〈Ψ| L†µ

)
(125)

Density matrix at time τ is a statistical mixture of the initial pure
state (with a large probability of order 1) and of projectors on the
states Lµ |Ψ〉.
The Lµs are ‘jump operators’ which describe a random (possibly
large) evolution of the system which suddenly (at the time scale of
the evolution) changes under the influence of the environment.

Intuitive picture of quantum jumps for an atom emitting a single
photon
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Atomic relaxation

Atomic relaxation
Quantum jumps

The quantum jump operators are not defined unambiguously. Again,
the same master equation can be recovered from different sets of Mµs
(or Lµs) linked together by a unitary transformation matrix. Different
choices correspond to the so-called ‘unravelings’ of the master
equation.

In some situations, the quantum jumps have a direct physical
meaning. e.g. emitting atom completely surrounded by a
photo-detector array. The quantum jump then corresponds to a click
of one detector. Different unravelings may then correspond to
different ways of monitoring the environment, in this case to different
detectors (photon counters, homodyne recievers...)

In other situations, the quantum jumps are an abstract representation
of the system+environment evolution.
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Atomic relaxation

Atomic relaxation
Quantum trajectories

Even when the environment is not explicitly monitored, one may
imagine that it is done. We then imagine we have full information
about which quantum jump occurs when.

The system is thus, at any time, in a pure state, which undergoes a
stochastic trajectory in the Hilbert space, made up of continuous
Hamiltonian evolutions interleaved with sudden quantum jumps.

However, since we only imagine the information is available, we
should describe the evolution of the density operator by averaging the
system evolution over all possible trajectories.

The ‘environment simulator’ concept provides a simple recipe to
perform this averaging.
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Atomic relaxation

Atomic relaxation
Environment simulator

B coupled to S so that the reduced dynamics for S is the same as when
coupled to E .

B prepared in the same reference state |0〉 at the start of each time
interval τ

Hamiltonian evolution of S + B during the time interval τ

USB |Ψ〉 ⊗ |0〉 = M0 |Ψ〉 ⊗ |0〉+
√
τ
∑
µ

(Lµ |Ψ〉)⊗ |µ〉 (126)

Unread measurement of OB having the |µ〉s as non degenerate
eigenstates, with µ as the eigenvalue. This measurement tells which
jump has happened if any.
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Atomic relaxation

Atomic relaxation
Environment simulator

At the end of the time interval τ :

With a probability p0 = 〈Ψ|M†0M0 |Ψ〉 = Tr(ρM†0M0) =

1− τ
∑

µ 6=0 Tr(ρL
†
µLµ) = 1−

∑
µ6=0 pµ, the result is 0, no jump and

M0 |Ψ〉√
p

0

=
1− iHτ/~− Jτ

√
p

0

|Ψ〉 (127)

Evolution can be interpreted as resulting from evolution in the
non-hermitian Hamiltonian

Heff = H − i~J (128)

With a probability pµ = τTr(ρL†µLµ), the result is µ and the system’s
state is accordingly projected onto Mµ |Ψ〉/

√
pµ = Lµ |Ψ〉/

√
pµ/τ .

The quantum trajectory is defined by the repetition of such steps.
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Atomic relaxation

Atomic relaxation
Environment simulator

We have no access to the environment state in most real cases.

Recovers the right evolution during τ by averaging all projectors on all
possible final pure states (with proper measurement probability
weights).

Recovers the full density operator evolution by averaging the
projectors on all possible quantum trajectory states.

Full mathematical equivalence between this average and the solution
of the Lindblad equation.

Leads to an efficient numerical method for solving Lindblad equations.
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Atomic relaxation

Atomic relaxation
Quantum Monte Carlo trajectories

Initialize the state (randomly chosen eigenstate |Ψ〉 of ρ)

For each time interval τ , evolve |Ψ〉 according to:

I Compute pµ = τ 〈Ψ| L†µLµ |Ψ〉 and p0 = 1−
∑

µ 6=0 pµ.
I Use a (good) random number generator to decide upon the result of

the measurement of B.
I If the result of the measurement is zero, evolve |Ψ〉 with

|Ψ〉 −→ 1− iHτ/~− Jτ
√
p0

|Ψ〉 (129)

I If the result of the measurement is µ 6= 0, evolve |Ψ〉 by:

|Ψ〉 −→ Lµ√
〈Ψ| L†µlµ |Ψ〉

|Ψ〉 =
Lµ√
pµ/τ

|Ψ〉 (130)

Repeat the procedure for many trajectories

Average the projectors ρ(t) = |Ψ(t)〉 〈Ψ(t)|
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Atomic relaxation

Atomic relaxation
Quantum Monte Carlo trajectories

Interest of the Monte Carlo method:

For each trajectory computes only a state vector with NS dimensions
i.e. NS coupled differential equations, instead of N2

S equations for the
full density operator.

Neeeds a statistical sample of trajectories. A few hundreds is enough
to get a qualitative solution. Method more efficient than the direct
integration when NS is larger than a few hundreds.

Gives a physical picture of the relaxation process (see below).

An extremely useful method, with thousands of applications.

J.M. Raimond Atoms and photons September 12, 2016 57 / 112



Atomic relaxation

Atomic relaxation
Spontaneous emission

A practical (and important) example. Optical transition: Zero temperature
model.
A single jump operator (describing photon emission in a downwards
transition)

L =
√

Γσ− (131)

with Γ = 1/T1 (‘longitudinal relaxation time’). Lindblad equation

dρ

dt
= Γ

(
σ−ρσ+ −

1

2
σ+σ−ρ−

1

2
ρσ+σ−

)
(132)
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Atomic relaxation

Atomic relaxation
Spontaneous emission

With

ρ =

(
ρee ρeg

ρge ρgg

)
(133)

the solution of the Lindblad equation is

dρee

dt
= −Γρee (134)

dρeg

dt
= −Γ

2
ρeg (135)

Relaxation of excited state population with a rate Γ.

Relaxation of coherence with a rate Γ/2 (compatible with
ρeg ≤

√
ρeeρgg )
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Atomic relaxation

Atomic relaxation
Phase damping

Model atomic relaxation due to random fields altering the atomic
frequency and scrambling the coherence phase.

Jump operator
√
γ/2σz with γ = 1/T2 the ‘transverse’ relaxation

rate and T2 the transverse relaxation time. Models sudden phase
shifts of coherences.

No damping of the populations, but coherences damped at rate γ.

Complete Lindblad equation with spontaneous emission

dρee

dt
= −Γρee (136)

dρeg

dt
= −Γ

2
ρeg − γρeg = −γ′ρeg (137)

where we define the total relaxation rate of the coherence by:

γ′ = γ +
Γ

2
(138)
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Atomic relaxation

Atomic relaxation
Spontaneous emission

Case of an initial superposition state |Ψ0〉 = (1/
√

2)(|e〉+ |g〉). Analysis
in terms of the Monte Carlo trajectories.

No jump evolution. With |Ψ(t)〉 = ce |e〉+ cg |g〉 and use effective
Hamiltonian

H = −i~J = − i~
2

Γσ+σ− = − i~
2

Γ |e〉 〈e| (139)

i~
dce

dt
= − i~

2
Γce ce(t) = ce(0)e−Γt/2 dcg

dt
= 0 (140)

|Ψ(t)〉 =
1

|ce(0)|2e−ΓT + |cg (0)|2
(
ce(0)e−Γt/2 |e〉+ cg (0) |g〉

)
(141)

A negative detection (no photon emitted) changes the system’s state.

Jump: state becomes |g〉. No further evolution.
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Optical Bloch equations

Optical Bloch equations

Merge the atom-field interaction and the relaxation (phase damping
and/or spontaneous emission) in a single set of equations.

Analyse the immediate consequences of these equations.
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Optical Bloch equations

Optical Bloch equations
The equations

Hamiltonian in interaction representation w.r.t. the field frequency:

H =
~∆

2
σz −

~Ω

2

(
σ+e

−iϕ + σ−e
iϕ
)

(142)

with Ω = dE0/~ and ∆ = ωeg − ω and

E1 = E0e
−iϕ (143)
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Optical Bloch equations

Optical Bloch equations
The equations

Coherent evolution of ρ ruled by the Schrödinger equation:

dρee

dt
= ΩIm

(
ρege

iϕ
)

=
d

~
Im (ρegE

∗
1 ) (144)

and

dρeg

dt
= −i∆ρeg + i

Ω

2
e−iϕ(ρgg − ρee)

= −i∆ρeg − i
d

2~
E1(ρee − ρgg ) (145)
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Optical Bloch equations

Optical Bloch equations
The equations

Add relaxation (assume mere addition of evolution terms and note that
Lindblad equation terms are not changed in interaction representation)

dρee

dt
=

d

~
Im (ρegE

∗
1 )− Γρee (146)

dρeg

dt
= −i∆ρeg − i

d

2~
E1(ρee − ρgg )− γ′ρeg (147)

with Γ = 1/T1 and γ′ = (1/2T1) + 1/T2
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Optical Bloch equations

Optical Bloch equations
Equivalent forms

Introducing

The populations Ne = ρee and Ng = ρgg

The complex dipole amplitude

D = 2dρeg (148)

so that the average value of the dipole in state ρ is ReD
We get:

dNe

dt
=

1

2~
Im (DE ∗1 )− ΓNe (149)

dD
dt

= −i∆D − γ′D − i
d2E1

~
(Ne − Ng ) (150)
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Optical Bloch equations

Optical Bloch equations
Equivalent forms

Introducing the Bloch vector r = (x , y , z) so that

ρ =
1 + r · σ

2
(151)

or

ρ =
1

2

(
1 + z x − iy
x + iy 1− z

)
(152)

x = 2Re ρeg y = −2Im ρeg z = 2ρee − 1 (153)

With E1 = Ex + iEy

dz

dt
= −d

~
(xEy + yEx )− Γ(1 + z) (154)

dx

dt
= −∆y +

d

~
zEy − γ′x (155)

dy

dt
= +∆x +

d

~
zEx − γ′y (156)
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Optical Bloch equations

Optical Bloch equations
Rabi oscillations revisited

Rabi oscillations with relaxation. Simplifying hypotheses:

Initial state |g〉 corresponding to z = −1 and x = y = 0.

The field is purely real: Ey = 0, Ex = +E0

Atom and field are at resonance: ∆ = 0.

dz

dt
= −Ωy − Γ(1 + z) (157)

dy

dt
= Ωz − γ′y (158)

x = 0 at any time.

d2z

dt2
+ (Γ + γ′)

dz

dt
+
(
Ω2 + γ′Γ

)
z = −γ′Γ (159)
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Optical Bloch equations

Optical Bloch equations
Rabi oscillations revisited

Steady state:

zs = − γ′Γ

Ω2 + γ′Γ
(160)

ys =
Ω

γ′
z = − ΩΓ

Ω2 + γ′Γ
(161)

For Ω→ 0, ys = 0 and zs = −1

For Ω→∞, zs = ys = 0
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Optical Bloch equations

Optical Bloch equations
Rabi oscillations revisited

Transient regime. Simplifying hypotheses:

γ′ = Γ/2: no transverse relaxation

Ω� Γ: Strong drive

d2z

dt2
+

3Γ

2

dz

dt
+ Ω2z = 0 (162)

Solution:
z(t) = − cos(Ωt)e−3Γt/2 (163)

an exponentially damped Rabi oscillation at the frequency Ω.
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Optical Bloch equations

Optical Bloch equations
Rabi oscillations revisited

A simple interpretation in terms of quantum trajectories (only spontaneous
emission relaxation)

Before the first jump, an uninterrupted Rabi oscillation

The first jump projects the atom in |g〉 and restarts the Rabi
oscillation

The occurrence of random jumps thus dephase the oscillations
corresponding to different trajectories

Hence an exponential damping of the Rabi oscillation amplitude.
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Optical Bloch equations

Optical Bloch equations
Oscillator strength revisited

Return to the hypotheses of first paragraph

Atom initially in |g〉
Detuned field ∆� Γ, γ′, hence Ng ≈ 1

We determine the steady state complex dipole D = 2dρge from

dD
dt

= −i∆D − γ′D − i
d2E1

~
(Ne − Ng ) (164)

Ds =
d2

~∆
E1 =

q2| 〈e| z |g〉 |2

~(ωeg − ω)
E1 (165)

and define the quantum polarizability as

αQ =
q2

~(ωeg − ω)
| 〈e| z |g〉 |2 (166)
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Optical Bloch equations

Optical Bloch equations
Oscillator strength revisited

Comparing the quantum and the classical polarizability:

αc =
q2

2mε0ωeg

1

ωeg − ω
(167)

we get back the ‘oscillator strength’ (a mere consistency check)

f =
2mωeg

~
| 〈e| z |g〉 |2 (168)
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Optical Bloch equations

Two limit cases
Back to Einstein coefficients

Recover the Einstein coefficients as a limit case of the Optical Bloch
Equations in two limit cases

Strong transverse damping γ′ ≈ γ
Stochastic, noisy driving field

In both cases, stochasticity turns the coherent Rabi oscillation into
transfer rates à la Einstein
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Optical Bloch equations

Two limit cases
Strong transverse relaxation

Assume γ′ ≈ γ and Γ� γ′. Use again

dD
dt

= −i∆D − γ′D − i
d2E1

~
(Ne − Ng ) (169)

Fast relaxation allows to neglect dD/dt. Assume thus that the dipole is at
any time in the steady state value:

D =
i

γ′ + i∆

d2E1

~
(Ng − Ne) (170)

Inject in the equation of motion for Ne :

dNe

dt
= −ΓNe +

1

2~
Im

[
i

γ′ + i∆

d2E1

~
(Ng − Ne)E ∗1

]
= −ΓNe +

d2E 2
0

2~2
(Ng − Ne)

γ′

γ′2 + ∆2
(171)
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Optical Bloch equations

Two limit cases
Strong transverse relaxation

Assume a small but finite frequency bandwidth for the electric field:
E 2

0 ∝ uν0 . Make field resonant (∆ = 0).

dNe

dt
= −ΓNe +

d2E 2
0

2~2γ′
(Ng − Ne) = −ΓNe +

Ω2

2γ′
(Ng − Ne) (172)

dNe

dt
= AegNe + (BgeuνNg − BeguνNe) (173)

with the evident correspondence Aeg = Γ
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Optical Bloch equations

Two limit cases
Stochastic fields

Described in terms of a slowly variable complex amplitude E1(t)
modulating an oscillation at the average frequency ω:

E (t) = E1(t)e−iωt (174)

Stochastic properties encoded in the autocorrelation function:

ΓE (τ) = lim
T→∞

1

T

∫ t+T

t
E ∗1 (t ′)E1(t ′ − τ) dt ′ (175)

or, within an ergodic hypothesis

ΓE (τ) = E ∗1 (t)E1(t − τ) (176)

where the overline denotes an average over very many realizations of the
source. ΓE has a width τc (defining the source correlation time). Note

ΓE (−τ) = E ∗1 (t)E1(t + τ) = E ∗1 (t ′ − τ)E1(t ′) = Γ∗E (τ) (177)
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Optical Bloch equations

Two limit cases
Stochastic fields

Spectral density of radiation SE (ω):

SE (ω) =
1

2π

∫ ∞
−∞

dτ ΓE (τ)e−iωτ (178)

real due to (177). Spectrum of the source: spectral density translated by
ω. Width of the order of 1/τc .
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Optical Bloch equations

Two limit cases
Stochastic fields

Since E1(t) varies slowly at the time scale of the optical frequency:

dρeg

dt
= −i∆ρeg − γ′ρeg −

id

2~
E1(t)(ρee − ρgg ) (179)

where ∆ is now ωeg − ω. Defining

ρ̃eg = ρege
(i∆+γ′)t (180)

we get

ρ̃eg (t) = − id

2~

∫ t

0
E1(t ′)(ρee − ρgg )(t ′)e(i∆+γ′)t′ dt ′ (181)

With ρeg = ρ̃eg exp[−(i∆ + γ′)t]:

ρeg (t) = − id

2~

∫ t

0
E1(t ′)(ρee − ρgg )(t ′)e(−i∆−γ′)(t−t′) dt ′ (182)
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Optical Bloch equations

Two limit cases
Stochastic fields

Plug the expression of ρeg (t) in the equation of the populations:

dρee

dt
= −Γρee −

d2

2~2
Re

∫ t

0
E ∗1 (t)E1(t ′)(ρee − ρgg )(t ′)e(−i∆−γ′)(t−t′) dt ′

(183)
Settting t − t ′ = τ , or t ′ = t − τ (0 ≤ τ ≤ t)

dρee

dt
= −Γρee −

d2

2~2
Re

∫ t

0
E1(t− τ)E ∗1 (t)(ρee −ρgg )(t− τ)e(−i∆−γ′)τ dτ

(184)

J.M. Raimond Atoms and photons September 12, 2016 80 / 112



Optical Bloch equations

Two limit cases
Stochastic fields

Perform an ensemble average of the evolution equations (leaving ρ
invariant)

dρee

dt
= −Γρee −

d2

2~2
Re

∫ t

0
ΓE (τ)(ρee − ρgg )(t − τ)e(−i∆−γ′)τ dτ (185)

Short source correlation time τc .

Replace (ρee − ρgg )(t − τ) by (ρee − ρgg )(t)

Extend upper integral bound to infinity
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Optical Bloch equations

Two limit cases
Stochastic fields

Final equation of motion:

dρee

dt
= −Γρee − C (∆)(ρee − ρgg ) (186)

where

C (∆) =
d2

2~2
Re

∫ ∞
0

ΓE (τ)e(−i∆−γ′)τ dτ (187)

Neglect the transverse relaxation rate γ′ compared to the field frequency
width.

C (∆) =
d2

2~2
Re

∫ ∞
0

ΓE (τ)e−i∆τ dτ (188)
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Optical Bloch equations

Two limit cases
Stochastic fields

Link with spectral density:

2πSE (∆) =

∫ 0

−∞
ΓE (τ)e−i∆τ dτ +

∫ ∞
0

ΓE (τ)e−i∆τ dτ (189)

With ΓE (−τ) = Γ∗E (τ):∫ 0

−∞
ΓE (τ)e−i∆τ dτ =

∫ ∞
0

ΓE (−τ)e i∆τ dτ =

(∫ ∞
0

ΓE (τ)e−i∆τ dτ

)∗
(190)

Hence,

2πSE (∆) = 2Re

∫ ∞
0

ΓE (τ)e−i∆τ dτ (191)

and, finally

C (∆) =
πd2

2~2
SE (∆) (192)
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Optical Bloch equations

Two limit cases
Einstein at last

Assuming finally the resonance condition (∆ = 0) and noting that

uν = 2π2ε0SE (0) (193)

we get
C (0) = C = Beguν (194)

and

Beg =
d2

4πε0~2
(195)

and finally
dNe

dt
= −AegNe + Beguν(Ng − Ne) (196)
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Optical Bloch equations

Two limit cases
Einstein at last

The value of Beg obtained here differs by a factor 3/2 from that obtained
from

Aeg =
d2ω3

3πε0~c3
(197)

which is

Beg =
d2

6πε0~2
(198)

Reason: no averaging over polarizations in our calculation.
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Optical Bloch equations

Two limit cases
Spectrum of a lamp

An exercise on autocorrelation functions. Spontaneous emission by a large
ensemble of atoms. Train of exponentially damped pulses (Np per unit
time) with random relative phases:

E1(t) =
∞∑

i=−∞
E0e

iφi e−(t−ti )/τe Θ(t − ti ) (199)

ΓE = NpTγe (200)

with

γE (τ) =
1

T
E 2

0

∫ T

0
e−t/τee−(t−τ)/τe Θ(t − τ) dt (201)

γE (τ) =
1

T
E 2

0

[∫ ∞
τ

e−2t/τe dt

]
eτ/τe

=
1

T
E 2

0

τe

2
e−|τ |/τe (202)
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Optical Bloch equations

Two limit cases
Spectrum of a lamp

Finally

ΓE (τ) = NpE
2
0

τe

2
e−|τ |/τe (203)

and

SE (ω) =
NpE

2
0

π

1

ω2 + (1/τe)2
(204)

a Lorentzian spectrum with a width 1/τe .
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Applications

Applications

Explore direct applications of the Optical Bloch equations:

Steady-state and Saturation

Optical pumping

Dark resonance and EIT

Light shifts and Autler Townes splitting

Maxwell Bloch equations
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Applications

Steady-state and Saturation

Classical model (chapter 1): power given to the matter by the field

E =
1

2
ε0ωχ

′′|E1|2 =
1

2
ε0ωNα′′|E1|2 (205)

where N is the number of atoms in the medium (the populations in the
Bloch equations sum to one so that the number of atoms in |e〉 is NNz )
The complex dipole amplitude D is D = ε0αE1 and thus

E = N ωE1

2
ImD (206)

Linear function of the incoming power. An unrealistic model: an atom
cannot diffuse a MW laser field. What is the prediction of the OBEs?
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Applications

Steady-state and Saturation
Steady state power

Replace in the classical expression of the energy exchange the dipole by D.
Recall the OBEs and assume E1 real without loss of generality

dNe

dt
=

1

2~
Im (DE1)− ΓNe (207)

dD
dt

= −i∆D − γ′D − i
d2E1

~
(Ne − Ng ) (208)

In the steady state:

D =
∆ + iγ′

∆2 + γ′2
d2E1

~
(Ng − Ne) (209)
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Applications

Steady-state and Saturation
Steady state power

Similarly, the steady state value of Ne is

Ne =
d2E 2

1

2~2Γ
(Ng − Ne)

γ′

∆2 + γ′2
(210)

Introducing the Rabi frequency Ω = dE1/~ and defining the saturation
parameter:

s =
Ω2

Γγ′
1

1 + ∆2/γ′2
, (211)

which has a Lorentzian variation with the atom-field detuning ∆, we arrive
at

Ne =
s/2

1 + s
(212)

Ng − Ne =
1

1 + s
, (213)
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Applications

Steady-state and Saturation
Steady state power

We get also D such that

|D|2 = d2 Γ

γ′
s

(1 + s)2
. (214)

and finally

E =
N~ωΓ

2

s

1 + s
, (215)

always positive, since there can be no population inversion. The absorbed
energy has a Lorentzian shape for a small saturation parameter (s � 1;
small Rabi frequency).
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Applications

Steady-state and Saturation
Saturation intensity

At resonance (∆ = 0) the ‘saturation parameter’ s = s0 is:

s0 =
Ω2

Γγ′
(216)

and

E = N ~ω
2

Γ
s0

1 + s0
(217)

At low power, E is proportional to s0 i.e. to the incoming field
intensity. Recover classical model result

At infinite input power,

Es = N~ω
Γ

2
(218)

photons scattered at a rate Γ/2.

Onset of the saturation for s0 ≈ 1
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Applications

Steady-state and Saturation
Saturation intensity

With s0 = d2E 2
1 /~2Γγ′ and an incident power per unit surface

I = ε0cE
2
1 /2 then

s0 =
d2E 2

1

~2Γγ′
=

I

Is
(219)

where the saturation intensity Is is

Is =
Γγ′

d2

ε0c

2
~2 (220)

Consider the simple case γ′ = Γ/2 (no additional transverse damping) then

Is =
Γ2

4

ε0c

d2
~2 (221)
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Applications

Steady-state and Saturation
Saturation intensity

Using (anticipating again on Chapter 4)

Γ =
ω3d2

3πε0~c3
(222)

Is =
π

3
~ωΓ

1

λ2
= ~ω

Γ

2

1

σc
(223)

Saturation: one photon incident in the resonant cross section of the
classical model, σc = 3λ2/2π, at the maximum rate of diffusion Γ/2.

Order of magnitude: with Γ = 3. 107 s−1, λ = 1 µm we get
Is = 0.6 mW/cm2
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Applications

Steady-state and Saturation
Saturation spectroscopy

A useful method to get rid of the Doppler broadening of atomic transitions.

Laser Cell

Detector

(a) (b)
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Applications

Steady-state and Saturation
Saturation spectroscopy

Resonance conditions for the two beams

Direct beam: ∆ = ωeg − ω = −kvz

Reflected beam: ∆ = kv ′z
I Out of resonance (∆ much larger than Ω and Γ), the two

counterpropagating beams interact with different velocity classes due
to the Doppler effect. The absorptions are independent and equivalent
to one path in a medium with a double atom number 2N 1. The
absorbed energy is

E = 2× N~ΩΓ

2

s0

1 + s0
(224)

I At resonance (∆ = 0), the two beams interact with the vz = 0 class.
The saturation parameter is doubled (twice the intensity) but the atom
number is twice lower (only one class). The absorbed energy is them

E0 =
N~ΩΓ

2

2s0

1 + 2s0
(225)

1This quantity should be defined more carefully in terms of the Maxwell velocity
distribution and the width of the velocity class.
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Applications

Steady-state and Saturation
Saturation spectroscopy

Hence, the ‘dip depth’ is
E0

E
=

1 + s0

1 + 2s0
(226)

and its width is γ′
√

1 + s0. The best compromise corresponds to s0 ≈ 1,
with a depth of 1/3 and a width of 2γ′).
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Applications

Steady-state and Saturation
Saturation spectroscopy

Case of a multilevel atom: two nearly degenerate ground states, |g〉 and
|f 〉, and an excited state |e〉 (Λ system). Saturation resonances at:

ωge

ωfe

Crossover resonance dip: direct beam resonant at ωfe for
kvz = ω − ωfe , saturating the f → e transition, and reflected beam
probing this saturation when resonant on |g〉 → |e〉 if
kvz = −(ω − ωge) i.e.

ω =
ωfe + ωge

2
(227)
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Applications

Optical pumping
Principle

Λ system again. |e〉 decays towards both |g〉 and |f 〉 with rates Γeg and
Γef . Goal: populate only |f 〉.
Method: drive selectively |g〉 → |e〉.
After a few fluorescence cycles, |g〉 is depopulated.
More quantitative approach based on Einstein’s coefficients.

dNe

dt
= −(Γeg + Γef )Ne +

Ω2

2γ′
(Ng − Ne) (228)

dNg

dt
= ΓegNe −

Ω2

2γ′
(Ng − Ne) (229)

dNf

dt
= Γef Ne (230)

with N = Ne + Nf + Ng
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Applications

Optical pumping
Dynamics

Steady state: Ne = 0 and hence Ng = 0 and Nf = N.

Puming dynamics. In the weak pump limit:

Ω2

γ′
� Γeg , Γef (231)

Ne is low and at any time at a steady state value

Ne =
Ω2/2γ′

Γeg + Γef + Ω2/2γ′
Ng ≈

Ω2/2γ′

Γeg + Γef
Ng (232)

dNg

dt
= −ΓpNg (233)

where we define the optical pumping rate Γp by:

Γp =
Γef

Γeg + Γef

Ω2

2γ′
(234)

An exponential approach to the steady state.
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Applications

Dark resonances and EIT
Dark states

Again Λ system with two resonant laser fields E1 and E2 separately
coupled to the |g〉 → |e〉 and |f 〉 → |e〉 transitions (selection rules make
|g〉 impervious to E2 and |f 〉 to E1. The total interaction Hamiltonian is
Hi = −d · (E1 + E2), where d is the dipole operator (back to the basics).
We set

deg = 〈e|d · E1|g〉; def = 〈e|d · E2|f 〉 (235)

A state |Ψ−〉 = cg |g〉+ cf |f 〉 is decoupled from the lasers
(〈e|Hi |Ψ−〉 = 0) if cgdeg + cf def = 0 i.e.

cg =
def

d
and cf = −deg

d
(236)

or

|Ψ−〉 =
def

d
|g〉 − deg

d
|f 〉 (237)

with

d =
√
|deg |2 + |def |2 (238)
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Applications

Dark resonances and EIT
Dark states

We have here written the states and the fields at a given time. This
condition remains valid at all times if |g〉 and |f 〉 are degenerate with
lasers at resonance.
When |g〉 and |f 〉 have different energies the dark state condition is
maintained at any time if

|Ψ−〉 (t) =
def

d
e−iω1te−iωg t |g〉 − deg

d
e−iω2te−iωf t |f 〉 (239)

is, within a global phase, independent of time i.e; if ω1 + ωg = ω2 + ωf or

ω1 − ω2 = ωfg , (240)

if the difference of the fields frequencies is equal to the Bohr frequency
between the two ground states. This is nothing but a Raman resonance
condition.
The first evidence of dark resonances has been obtained in 1976 by Gozzini
and his group in Pisa
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Applications

Dark resonances and EIT
Dark states

The orthogonal state |Ψ+〉 is maximally coupled to lasers:

|Ψ+〉 =
d∗eg

d
|g〉+

d∗ef

d
|f 〉 (241)

In presence of relaxation (spontaneous emission), we have one ground
state coupled to the laser and another uncoupled. This is again an optical
pumping situation. After a few emission cycles, we unconditionnaly end up
in the dark state |Ψ−〉. Fluorescence stops.
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Applications

Dark resonances and EIT
Electromagnetically induced transparency

Λ system, strong drive of |f 〉 → |e〉 (E at frequency ω, Rabi frequency Ω),
weak probe of |g〉 → |e〉 (E ′, ω′, Ω′). Generalize OBES as:

dρee

dt
= −(Γef + Γeg )ρee − ΩIm ρef − Ω′Im ρeg (242)

dρff

dt
= Γef ρee + ΩIm ρef (243)

dρgg

dt
= Γegρee + Ω′Im ρeg (244)

dρef

dt
= −Γef

2
ρef + i

Ω

2
(ρee − ρff ) + i

Ω′

2
ρgf (245)

dρeg

dt
= −

(
Γeg

2
+ i∆′

)
ρeg + i

Ω′

2
(ρgg − ρee) + i

Ω

2
ρfg (246)

dρgf

dt
= −i∆′ρgf + i

Ω

2
ρge − i

Ω′

2
ρef (247)
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Applications

Dark resonances and EIT
Electromagnetically induced transparency

Simplify with Γef = Γeg = Γ and extract absorption of weak probe
(absorbed energy E ′ , proportional to Im ρeg in the steady state).

E ′ ∝ Γ2∆′2

Γ2∆′2 + 4
(
∆′2 − Ω2/4

)2
(248)
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Applications

Dark resonances and EIT
Electromagnetically induced transparency

Absorption of the probe field as a function of the detuning ∆ for Ω = 10Γ
(left) or Ω = 0.1Γ (right). The unit of the horizontal axis is Γ.
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Applications

Dark resonances and EIT
Electromagnetically induced transparency

Slow light. In the small Ω case, the absorption has a narrow dip at
resonance, whose width is only limited by the Rabi frequency. In actual
experiments, the width can be only a few kHz. Hence, the (at resonance)
transparent medium has an index of refraction n for the weak probe field
varying rapidly with the detuning ∆ i.e. with ω′. Since

vg =
c

n + ω′ dn/dω′
, (249)

the light group velocity can be made very small, 17 m/s in the original
paper by Lene Hau and her group (Nature, 397, 594).
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Applications

Maxwell Bloch equations

Treat propagation in an atomic medium. Maxwell:

∇× E = −∂B
∂t

(250)

∇ ·D = 0 (251)

∇ · B = 0 (252)

∇× B = µ0ε0
∂E

∂t
+ µ0

∂P

∂t
(253)

Hence, for a transverse wave

∆E− 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
(254)

(note that we assume a low density and treat the macroscopic fields as
being the local ones)
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Applications

Maxwell-Bloch equations

Monochromatic plane wave in an isotropic medium

P = P0(z , t)e i(kz−ωt)ux and E = E0(z , t)e i(kz−ωt)ux (255)

Hence, noting
∂P0

∂t
� ωP0 (256)

and neglecting the proper time derivatives

∂E0

∂z
+

1

c

∂E0

∂t
= i

µ0ω
2

2k
P0 (257)

with
P0 = ND = 2Ndρeg (258)

∂E0

∂z
+

1

c

∂E0

∂t
= i

ωNd

ε0c
ρeg (259)
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Applications

Maxwell-Bloch equations
Pulse propagation

A simple application: propagation in a relaxation-free medium. Atoms
described by the angle φ(z , t) of the Bloch vector with the vertical axis.
Assuming real quantities

dφ(z , t)

dt
=

dE0(z , t)

~
= Ω(z , t) (260)

ρeg = −i sin
φ

2
(261)

Hence
∂2φ

∂z∂t
+

1

c

∂2φ

∂t2
= −µ sinφ (262)

where

µ =
ωNd2

2ε0~c
(263)
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Applications

Maxwell-Bloch equations
Pulse propagation

Using as independent variables z and the ‘retarded time’ τ = t − z/c :

∂2φ

∂z∂τ
− µ sinφ (264)

Sine-Gordon equation
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