Atoms and photons Chapter 2

J.M. Raimond

September 12, 2016

	сл.	ы	2	m	\sim	
	•	1.5	-		U.	ч.

- ∢ ≣ → September 12, 2016 1 / 112

-

1 Interaction Hamiltonian

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

1 Interaction Hamiltonian

2 Non-resonant interaction: perturbative approach

3

A B A A B A

Image: A matrix

1 Interaction Hamiltonian

2 Non-resonant interaction: perturbative approach

Classical field and free atom

3

∃ ► < ∃ ►</p>

- 一司

1 Interaction Hamiltonian

2 Non-resonant interaction: perturbative approach

- Classical field and free atom
 - 4 Atomic relaxation

3

- E

-

- 一司

Interaction Hamiltonian

- 2 Non-resonant interaction: perturbative approach
- Classical field and free atom 3
 - Atomic relaxation
- 5 Optical Bloch equations

Interaction Hamiltonian

- 2 Non-resonant interaction: perturbative approach
- Classical field and free atom 3
- 4 Atomic relaxation
- Optical Bloch equations

6 Applications

We consider a single electron atom (Hydrogen). The free Hamiltonian is:

$$H_0 = \frac{P^2}{2m} + qU(\mathbf{R}) \tag{1}$$

P and **R**: momentum and position operators. Eigenstates $H_0 |i\rangle = E_i |i\rangle$, ground state $|g\rangle$

Atom in a radiation field (potential vector $\mathbf{A}(\mathbf{r}, t)$, scalar potential $\mathbf{V}(\mathbf{r}, t)$):

$$H = \frac{1}{2m} \left(\mathbf{P} - q\mathbf{A}(\mathbf{R}, t) \right)^2 + qU(\mathbf{R}) + qV(\mathbf{R})$$
(2)

Note that $A(\mathbf{R}, t)$ is an operator in the electron's Hilbert space.

Gauge choice

Gauge transformation

$$\mathbf{A}' \rightarrow \mathbf{A} = \mathbf{A}' + \nabla \chi(\mathbf{r}, t)$$
$$V' \rightarrow V = V' - \frac{\partial \chi}{\partial t}$$
(3)

where $\boldsymbol{\chi}$ is an arbitrary function of space and time.

Coulomb gauge

J.M

$$\boldsymbol{\nabla}\cdot\boldsymbol{\mathsf{A}}=0\tag{4}$$

Raimond	Atoms and photons	September 12, 2016	4 / 112

Fourier space

Space-time Fourier transform

$$\mathbf{A}(\mathbf{r},t) = \frac{1}{4\pi^2} \int \mathbf{\mathcal{A}}(\mathbf{k},\omega) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \, d\mathbf{k} d\omega \tag{5}$$

Longitudinal and transverse potentials w.r.t. k:

$$\mathcal{A}(\mathbf{k},\omega) = \mathcal{A}_{\parallel} + \mathcal{A}_{\perp} \tag{6}$$

Hence:

$$\mathbf{A}(\mathbf{k},\omega) = \mathbf{A}_{\parallel} + \mathbf{A}_{\perp} \tag{7}$$

Space-time Fourier transform of $\nabla \cdot \mathbf{A}$: $i\mathbf{k} \cdot \mathcal{A}$. Coulomb:

$$\boldsymbol{\mathcal{A}}_{\parallel} = \boldsymbol{\mathsf{A}}_{\parallel} = \boldsymbol{\mathsf{0}} \tag{8}$$

3

5 / 112

< 回 ト < 三 ト < 三 ト

Fourier space

Same decomposition for fields. Transverse electric field, since divergence-free as ${\bf A}$ in the Coulomb gauge. With

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \boldsymbol{\nabla} V \tag{9}$$

and the fact that ∇V is longitudinal (proportional to **k** in Fourier space)

$$\boldsymbol{\nabla}V = 0 \tag{10}$$

and (no physical effect of a constant potential)

$$V = 0 \tag{11}$$

 $\mathbf{A} \cdot \mathbf{P}$ interaction

Expansion of $(\mathbf{P} - q\mathbf{A}(\mathbf{R}, t))^2$ taking care of the commutation of \mathbf{P} with **A**. Noting:

$$[P_i, f(\mathbf{R})] = -i\hbar \frac{\partial f}{\partial R_i} \quad i \in \{x, y, z\}$$
(12)

$$\sum_{i} [P_i, A_i] = -i\hbar \sum_{i} \frac{\partial A_i}{\partial R_i} = -i\hbar \nabla \cdot \mathbf{A} = 0$$
(13)

$$\mathbf{P} \cdot \mathbf{A} = \sum_{i} P_{i} A_{i} = \sum_{i} A_{i} P_{i} = \mathbf{A} \cdot \mathbf{P}$$
(14)

And finally

$$H = \frac{P^2}{2m} + qU(\mathbf{R}) - \frac{q}{m}\mathbf{P}\cdot\mathbf{A} + \frac{q^2}{2m}\mathbf{A}\cdot\mathbf{A}$$
(15)

Weak fields (much lower than atomic field unit, 10^{11} V/m), $\mathbf{A} \cdot \mathbf{A}$ quadratic term negligible compared to first order contribution.

$$H = H_0 - \frac{q}{m} \mathbf{P} \cdot \mathbf{A}(\mathbf{R}, t) . \tag{16}$$

 $\boldsymbol{A}\cdot\boldsymbol{P}$ interaction: dipole approximation

- Radiation wavelength: about 1 μm
- Atomic size: about 100 pm
- Neglect spatial variation of the vector potential across atomic orbit: $A(\mathbf{R}, t) = \mathbf{A}(0, t)$

$$H = H_0 - \frac{q}{m} \mathbf{P} \cdot \mathbf{A}(0, t) , \qquad (17)$$

Useful, but not the intuitive form for the interaction of a dipole with a field.

Interaction Hamiltonian $D \cdot E$ interaction

Cast the interaction Hamiltonian in the more familiar form $-\mathbf{d} \cdot \mathbf{E}$ (interaction energy of a dipole with a field, manifestly independent of the gauge choice). Two possible (and equivalent) approaches

- The Göppert-Mayer transformation
- Onitary transformation on the Hilbert space

• • = • • = •

The Göppert-Mayer transformation

Restart from full Hamiltonian

$$H = \frac{1}{2m} \left(\mathbf{P} - q\mathbf{A}(\mathbf{R}, t) \right)^2 + qU(\mathbf{R}) + qV(\mathbf{R})$$
(18)

and perform dipole approximation first. For the vector potential

$$\mathbf{A}(\mathbf{R},t) = \mathbf{A}(0,t) \tag{19}$$

and (keeping first order)

$$V = V(0, t) + \mathbf{R} \cdot \nabla V(0, t)$$
⁽²⁰⁾

The space-independent term in V has no effect

$$H = H_0 - \frac{q}{m} \mathbf{P} \cdot \mathbf{A}(0, t) + \mathbf{D} \cdot \nabla V$$
(21)

with

$$\mathbf{D} = q\mathbf{R} \tag{22}$$

10 / 112

The Göppert-Mayer transformation

Perform a gauge transformation:

$$\mathbf{A} \rightarrow \mathbf{A}' = \mathbf{A} + \nabla \chi(\mathbf{r}, t)$$
$$V \rightarrow V' = V - \frac{\partial \chi}{\partial t}$$
(23)

and choose

$$\chi(\mathbf{r},t) = -\mathbf{r} \cdot \mathbf{A}(0,t) \tag{24}$$

so that $\mathbf{A}'(0,t) = 0$. Then

$$V' = V + \mathbf{r} \cdot \frac{\partial \mathbf{A}(0, t)}{\partial t}$$
(25)

$$\nabla V'(0) = \nabla V(0) + \frac{\partial \mathbf{A}(0,t)}{\partial t} = -\mathbf{E}(0)$$
(26)
$$H = H_0 - \mathbf{D} \cdot \mathbf{E}(0)$$
(27)

11 / 112

Unitary transform approach

Restart from full Hamiltonian

$$H = \frac{1}{2m} \left(\mathbf{P} - q\mathbf{A}(\mathbf{R}, t) \right)^2 + qU(\mathbf{R}) + qV(\mathbf{R})$$
(28)

Switch to Coulomb gauge (no V contribution left) and perform dipole approximation $\mathbf{A}(\mathbf{r},t) = \mathbf{A}(0,t)$

$$H = \frac{1}{2m} \left(\mathbf{P} - q \mathbf{A}(0, t) \right)^2 + q U(\mathbf{R})$$
(29)

Unitary transform $|\Psi\rangle \rightarrow \left|\widetilde{\Psi}\right\rangle = T \left|\Psi\right\rangle (T^{\dagger}T = 1)$. Transformed Hamiltonian

$$\widetilde{H} = THT^{\dagger} + i\hbar \frac{dT}{dt}T^{\dagger}$$
(30)

Unitary transform approach

Choose T as a time-dependent translation of the momentum:

$$T\mathbf{P}T^{\dagger} = \mathbf{P} + q\mathbf{A}(0, t) \tag{31}$$

$$T = e^{-\frac{i}{\hbar}q\mathbf{R}\cdot\mathbf{A}(0,t)} = e^{-\frac{i}{\hbar}\mathbf{D}\cdot\mathbf{A}(0,t)}$$
(32)

Hence

$$T\left(\mathbf{P} - q\mathbf{A}(0,t)\right)^2 T^{\dagger} = \mathbf{P}^2$$
(33)

and

$$i\hbar \frac{dT}{dt}T^{\dagger} = \mathbf{D} \cdot \frac{d\mathbf{A}(0,T)}{dt} = -\mathbf{D} \cdot \mathbf{E}(0,t)$$
 (34)

Finally,

$$\widetilde{H} = H_0 - \mathbf{D} \cdot \mathbf{E}(0) \tag{35}$$

- 一司

Unitary transform approach

We get a transformed Hamiltonian in the $\mathbf{D}\cdot\mathbf{E}$ form, with a linear atom-field coupling.

We have not performed the weak field approximation to remove the ${\bf A}\cdot {\bf A}$ term in the Hamiltonian. Where is the magic?

The observables of the electron should be changed

$$O \to TOT^{\dagger}$$
 (36)

and this change contains non linear terms in **A**. It is only for weak fields that these terms can be neglected.

A simple situation:

- An atom initially in the ground state
- A weak non-resonant field so that the atom is always nearly in its ground state
- A perturbative solution to the Schrödinger equation

Recover, mutatis mutantis, all the results of the previous chapter with the harmonically bound electron model

Incoming plane wave:

$$\mathbf{E}(0,t) = E_0 \mathbf{u}_z \cos \omega t \tag{37}$$

Hamiltonian

$$H = H_0 + H_1 \tag{38}$$

with

$$H_1 = -qZE_0\cos\omega t \tag{39}$$

- 一司

Interaction representation w.r.t. H_0

$$\widetilde{H} = U_0^{\dagger} H_1 U_0$$
 with $U_0 = \exp(-iH_0 t/\hbar)$ (40)

Model

Expansion of the wave function over the eigenstates of H_0 :

$$\left|\widetilde{\Psi}\right\rangle = \sum_{j} \beta_{j} \left|j\right\rangle$$
 (41)

Injection in the Schrödinger equation and scalar product with $\langle k|$

$$i\hbar \frac{d\beta_k}{dt} = \sum_j \langle k | U_0^{\dagger} H_1 U_0 | j \rangle \beta_j$$
(42)

With $U_0 |j\rangle = \exp(-i\omega_j t) |j\rangle$, $\omega_j = E_j/\hbar$ and $\omega_{kj} = \omega_k - \omega_j$ (Bohr frequency)

$$\frac{d\beta_k}{dt} = -\frac{qE_0}{i\hbar} \sum_j e^{i\omega_{kj}t} \langle k | Z | j \rangle \beta_j \cos \omega t$$
(43)

Set of coupled first-order differential equations

Perturbative solution

Weak, non-resonant field. The atom is nearly in its ground state. Replace β_g by one (and all others by zero) in the r.h.s of the system

$$\frac{d\beta_k}{dt} \approx -\frac{qE_0}{i\hbar} e^{i\omega_{kg}t} \langle k | Z | g \rangle \cos \omega t$$
(44)

with the explicit solution

$$\beta_{k}(t) = \frac{qE_{0}}{2\hbar} \langle k | Z | g \rangle \left[\frac{e^{i(\omega_{kg} + \omega)t} - 1}{\omega_{kg} + \omega} + \frac{e^{i(\omega_{kg} - \omega)t} - 1}{\omega_{kg} - \omega} \right]$$
(45)

Resonances (and divergences) as expected at $\omega = \pm \omega_{kg}$ when $\langle k | Z | g \rangle$ does not vanish (selection rules). To compute the dipole, we return to the initial representation

$$|\Psi\rangle = \sum_{k} \beta_{k} e^{-i\omega_{k}t} |k\rangle$$
(46)

18 / 112

Comparison with classical model

Average dipole $\mathbf{D} = qZ\mathbf{u}_z = D\mathbf{u}_z$ (to be compared with the classical dipole)

$$\langle D \rangle = \sum_{\ell,k} \beta_{\ell}^* \beta_k e^{-i\omega_{k\ell} t} \langle \ell | qZ | k \rangle$$
(47)

Keeping only the first-order terms in the small $\beta_k, \ k \neq g$, amplitudes

$$\langle D \rangle = \sum_{k} \beta_{k} e^{-i\omega_{kg}t} \langle g | qZ | k \rangle + \text{c.c.}$$
(48)

$$\langle D \rangle = \frac{q^2 E_0}{2\hbar} \sum_{k} |\langle g | Z | k \rangle|^2 \left[\frac{e^{i\omega t} - e^{-i\omega_{kg} t}}{\omega_{kg} + \omega} + \frac{e^{-i\omega t} - e^{-i\omega_{kg} t}}{\omega_{kg} - \omega} + \text{c.c.} \right]$$
(49)

3

イロト 不得下 イヨト イヨト

Comparison with classical model

Dipole contains terms oscillating permanently at the Bohr frequencies. They are an artifact of the model (transients damped in a more realistic model)

$$\langle D \rangle = \frac{q^2 E_0}{2\hbar} \sum_{k} |\langle g| Z |k \rangle|^2 \left[\frac{e^{i\omega t}}{\omega_{kg} + \omega} + \frac{e^{-i\omega t}}{\omega_{kg} - \omega} + \text{c.c.} \right]$$
(50)

Real quantum polarizability:

$$\langle D \rangle = \epsilon_0 \alpha_Q(\omega) E_0 \cos \omega t \tag{51}$$

$$\alpha_{Q}(\omega) = \frac{2q^{2}}{\hbar\epsilon_{0}} \sum_{k} |\langle g | Z | k \rangle|^{2} \frac{\omega_{kg}}{\omega_{kg}^{2} - \omega^{2}}$$
(52)

Comparison with classical model

Classical polarizability (ω_0 : resonance frequency)

$$\alpha_c(\omega,\omega_0) = \frac{q^2}{m\epsilon_0} \frac{1}{\omega_0^2 - \omega^2}$$
(53)

Hence

$$\alpha_Q(\omega) = \sum_k f_{kg} \alpha_c(\omega, \omega_{kg})$$
(54)

with

$$f_{kg} = \frac{2m\omega_{kg}}{\hbar} |\langle g | Z | k \rangle|^2$$
(55)

being the (real) oscillator strength

Oscillator strength sum rule

Rewrite

$$f_{kg} = \frac{2m\omega_{kg}}{\hbar} \langle g | Z | k \rangle \langle k | Z | g \rangle$$
(56)

Noting

$$[Z, H_0] = \frac{i\hbar}{m} P_z , \qquad (57)$$

$$\langle k | P_z | g \rangle = \frac{m}{i\hbar} \langle k | ZH_0 - H_0 Z | g \rangle = -\frac{m\omega_{kg}}{i} \langle k | Z | g \rangle$$
(58)

Hence

$$f_{kg} = \frac{2}{i\hbar} \langle g | Z | k \rangle \langle k | P_z | g \rangle$$
(59)

æ

イロト イポト イヨト イヨト

Oscillator strength sum rule

Summing over k introduces a closure relation

$$\sum_{k} f_{kg} = \frac{2}{i\hbar} \langle g | ZP_{z} | g \rangle$$
(60)

 f_{kg} being real, the r.h.s is equal to the half sum with its conjugate

$$\sum_{k} f_{kg} = \frac{1}{i\hbar} \langle g | ZP_z - P_z Z | g \rangle = 1$$
(61)

A simple sum rule for the oscillator strengths

In this picture, an atomic medium of numeric density N appears a a mixture of classical harmonically bound electrons with resonance frequencies ω_{kg} and densities Nf_{kg} . All our conclusions on the propagation of light in the classical medium thus retain their validity in this perturbative semi-classical model. This property explains why the naive harmonically bound electron leads to realistic predictions.

24 / 112

・ 同 ト ・ ヨ ト ・ ヨ ト …

A two-level system

Consider now the case of a radiation resonant on the transition between between the two levels $|g\rangle$ (lower, possibly ground level) and $|e\rangle$ i.e.

$$\omega_0 = \omega_{eg}$$

All other levels can be neglected. Boils down to the interaction of a classical field with a spin 1/2 system.

Atomic system

Two states $|e\rangle$ and $|g\rangle$ or $|+\rangle$ and $|-\rangle$ or $|0\rangle$ and $|1\rangle$ in quantum information science.

Operator basis set: Pauli operators

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad (62)$$
$$[\sigma_{x}, \sigma_{y}] = 2i\sigma_{z} \qquad (63)$$

Spin lowering and raising operators

$$\sigma_{+} = |+\rangle \langle -| = \frac{\sigma_{x} + i\sigma_{y}}{2} = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$$
(64)

$$\sigma_{-} = \left|-\right\rangle\left\langle+\right| = \sigma_{+}^{\dagger} = \frac{\sigma_{x} - i\sigma_{y}}{2} = \begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}$$
(65)

$$[\sigma_z, \sigma_\pm] = \pm 2\sigma_\pm \tag{66}$$

Atomic system

Most general observable $\sigma_{\mathbf{u}}$ with $\mathbf{u} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

$$\sigma_{\mathbf{u}} = \begin{pmatrix} \cos\theta & \sin\theta e^{-i\phi} \\ \sin\theta e^{i\phi} & -\cos\theta \end{pmatrix}$$
(67)

Eigenvectors

$$|+_{\mathbf{u}}\rangle = |\mathbf{0}_{\mathbf{u}}\rangle = \cos\frac{\theta}{2}|+\rangle + \sin\frac{\theta}{2}e^{i\phi}|-\rangle$$
(68)
$$|-_{\mathbf{u}}\rangle = |\mathbf{1}_{\mathbf{u}}\rangle = -\sin\frac{\theta}{2}e^{-i\phi}|+\rangle + \cos\frac{\theta}{2}|-\rangle$$
(69)

< 67 ▶

3

27 / 112

Atomic system

Bloch sphere

J.M. Raimond

September 12, 2016

< 一型

→

2

28 / 112

Atomic system

Rotation on the Bloch sphere by an angle θ around the axis defined by **v**

$$R_{\mathbf{v}}(\theta) = e^{-i(\theta/2)\sigma_{\mathbf{v}}} = \cos\frac{\theta}{2}\mathbb{1} - i\sin\frac{\theta}{2}\sigma_{\mathbf{v}}$$
(70)

e.g. angle θ around \mathbf{u}_{z}

$$R_{z}(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{pmatrix}$$
(71)

with $R_z(\pi/2) |+_x\rangle = |+_y\rangle$ and $R_y(2\pi) = -\mathbb{1}$

29 / 112

Atomic Hamiltonian and observables

• Hamiltonian:

$$H_0 = \frac{\hbar\omega_{eg}}{2}\sigma_z \tag{72}$$

Generates a rotation of the Bloch vector at angular frequency ω_{eg} around *Oz* (Larmor precession in the NMR context).

Dipole operator:

$$\mathbf{D} = \begin{pmatrix} 0 & \mathbf{d} \\ \mathbf{d}^* & 0 \end{pmatrix} = \mathbf{d}\sigma_x = \mathbf{d}(\sigma_+ + \sigma_-)$$
(73)

where \mathbf{d} describes the polarization of the atomic transition. A priori complex, but taken as real for the sake of simplicity.

• Incoming field $\mathbf{E}(0,t) = \mathbf{E}_0 \cos(\omega t + \varphi)$. We note

$$E_1 = E_0 e^{-i\varphi} \tag{74}$$

3

30 / 112

Classical field and free atom Atomic Hamiltonian and observables

Atom-field Hamiltonian:

$$H_1 = -\mathbf{d} \cdot \mathbf{E}_0 \cos(\omega t + \varphi) \sigma_{\mathsf{x}} \tag{75}$$

$$H_1 = -\hbar\Omega\cos(\omega t + \varphi)\sigma_x \tag{76}$$

with definition of the 'Rabi frequency'

$$\Omega = \frac{\mathbf{d} \cdot \mathbf{E}_0}{\hbar} \tag{77}$$

Image: Image:

Remove time dependence?

3

A B F A B F
Rabi precession

Introduce $H'_0 = \hbar\omega\sigma_z/2$ (inducing a spin precession at the field frequency) so that ÷ ^

$$H = H_0' + \frac{\hbar\Delta}{2}\sigma_z + H_1 \tag{78}$$

with

$$\Delta = \omega_{eg} - \omega , \qquad (79)$$

Interaction representation w.r.t. H'_0 , defined by $U'_0 = \exp(-iH'_0t/\hbar)$.

$$\widetilde{H} = U_0^{\dagger} H_1 U_0^{\prime} \tag{80}$$

 σ_z part of H_1 unchanged (commutes with the evolution operator) but

$$\widetilde{\sigma}_{\pm} = U_0^{\dagger} \sigma_{\pm} U_0^{\prime} \tag{81}$$

Rabi precession

Using the Baker-Hausdorff lemma:

$$e^{B}Ae^{-B} = A + [B, A] + \frac{1}{2!}[B, [B, A]] + \dots$$
 (82)

with $B \propto \sigma_z$ and $\sigma_+ = A$

$$\widetilde{\sigma}_{+} = \sigma_{+} + i\omega t\sigma_{+} + (i\omega t)^{2}\sigma_{+} + \dots = e^{i\omega t}\sigma_{+}$$
(83)

and, by hermitic conjugation

$$\widetilde{\sigma}_{-} = e^{-i\omega t} \sigma_{-} \tag{84}$$

$$\widetilde{H} = \frac{\hbar\Delta}{2}\sigma_z - \frac{\hbar\Omega}{2}\left(e^{i(\omega t + \varphi)} + e^{-i(\omega t + \varphi)}\right)\left(e^{i\omega t}\sigma_+ + e^{-i\omega t}\sigma_-\right)$$
(85)

Two rapidly oscillating terms, and two constant ones.

3

Rabi precession

Rotating wave approximation (RWA): neglect terms oscillating rapidly in H

$$\widetilde{H} = \frac{\hbar\Delta}{2}\sigma_z - \frac{\hbar\Omega}{2}\left(\sigma_+ e^{-i\varphi} + \sigma_- e^{i\varphi}\right) = \frac{\hbar\Delta}{2}\sigma_z - \frac{\hbar\Omega}{2}\left(\sigma_x \cos\varphi + \sigma_y \sin\varphi\right)$$
(86)

$$H = \frac{\hbar\Omega'}{2}\sigma_{\mathbf{n}} \tag{87}$$

with

$$\mathbf{n} = \frac{\Delta \mathbf{u}_z - \Omega \cos \varphi \mathbf{u}_x - \Omega \sin \varphi \mathbf{u}_y}{\Omega'}$$
(88)

and

$$\Omega' = \sqrt{\Omega^2 + \Delta^2} \tag{89}$$

Hence,

$$U(t) = e^{-i(\Omega' t/2)\sigma_{\mathbf{n}}} = R_{\mathbf{n}}(\theta)$$
(90)

with

 $\theta = \Omega' t \tag{91}$

Rabi precession

Resonant case: rotation around an axis in the equatorial plane $\mathbf{n} = -\cos \varphi \mathbf{u}_x - \sin \varphi \mathbf{u}_y$. Choosing g as the initial state

$$p_e(t) = \frac{1 - \cos(\Omega t)}{2} \tag{92}$$

Rabi oscillation. Some particular pulses:

• ' $\pi/2$ pulse', i.e. $t = \pi/2\Omega$. Evolution operator

$$R_{\mathbf{n}}(\pi/2) = \frac{1}{\sqrt{2}} (\mathbb{1} - i\sigma_{\mathbf{n}}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & ie^{-i\varphi} \\ ie^{i\varphi} & 1 \end{pmatrix}$$
(93)

$$\begin{aligned} |g\rangle &\longrightarrow \frac{1}{\sqrt{2}} \left(|g\rangle + ie^{-i\varphi} |e\rangle \right) \\ |e\rangle &\longrightarrow \frac{1}{\sqrt{2}} \left(|e\rangle + ie^{i\varphi} |g\rangle \right) \end{aligned}$$
(94)

3

Rabi precession

- $\Omega t = \pi$ (π -pulse) exchange of levels
- $\Omega t = 2\pi$ (2π pulse) global sign associated to a 2π rotation of a spin-1/2.

General case: rotation is around an axis making a non-trivial angle α (given by tan $\alpha = \Omega'/\Delta$) with the downwards z axis. When starting from $|g\rangle$ the maximum excitation probability is

$$p_{e,m} = \frac{\Omega^2}{\Omega^2 + \Delta^2} \tag{95}$$

- Lorentzian resonance
- Width of order of π/τ for a given interrogation time τ

(no limit to the spectroscopic resolution since relaxation processes are not taken into account)

Ramsey separated oscillatory fields method

Two short $\pi/2$ quasi-resonant pulses separated by a long time interval T. Assume $\varphi = -\pi/2$. The pulses induce the transformations:

$$|e\rangle \longrightarrow \frac{1}{\sqrt{2}}(|e\rangle + |g\rangle)$$
 (96)

$$g\rangle \longrightarrow \frac{1}{\sqrt{2}}(-|e\rangle+|g\rangle)$$
 (97)

Starting from $|g\rangle$, after pulse 1, atom is in state $|\Psi(\tau)\rangle = (1/\sqrt{2})(-|e\rangle + |g\rangle).$

Ramsey separated oscillatory fields method

During time T, the atom evolves under the Hamiltonian $(\hbar\Delta/2)\sigma_z$ and hence $|e\rangle \rightarrow \exp(-i\Phi/2) |e\rangle$ and $|g\rangle \rightarrow \exp(i\Phi/2) |g\rangle$, with $\Phi = \Delta t$. State immediately before pulse 2, within an irrelevant global phase:

$$|\Psi(T)\rangle = \frac{1}{\sqrt{2}} \left(-|e\rangle + e^{i\Phi}|g\rangle\right)$$
 (98)

Final state

$$|\Psi_f\rangle = -\frac{1}{2} \left[\left(1 + e^{i\Phi} \right) |e\rangle + \left(1 - e^{i\Phi} \right) |g\rangle \right]$$
(99)

$$p_e = \frac{1}{4} \left(1 + e^{i\Phi} \right)^2 = \frac{1}{2} \left(1 + \cos \Delta T \right)$$
(100)

(note that $p_e = 1$ for $\Delta = 0$: addition of two in-phase $\pi/2$ pulses). Measurement of p_e provides a spectroscopic resolution of the order of 1/T.

Ramsey separated oscillatory fields method

Signal to noise discussion: ${\it N}$ independent atoms undergoing the same Ramsey sequence

$$\langle N_e \rangle = \frac{N}{2} (1 + \cos \Phi)$$
 (101)

with $\Phi = \Delta T$. Variance

$$\Delta^2 N_e = N p_e (1 - p_e) = \frac{N}{4} \sin^2 \Phi$$
(102)

and hence

$$\Delta N_e = \frac{\sqrt{N}}{2} \sin \Phi \tag{103}$$

Two measurements for Δ and $\Delta+\delta,$ with $\delta\ll 1/\mathcal{T}.$

$$\langle N_e(\Delta + \delta) \rangle = \langle N_e(\Delta) \rangle - \frac{NT}{2} \delta \sin \Delta T$$
 (104)

3

글 > - + 글 >

Classical field and free atom Ramsey separated oscillatory fields method

Resolve the small detuning increment δ if

$$\frac{NT}{2}\delta\sin\Delta T > \sqrt{2}\frac{\sin\Delta T}{2}\sqrt{N}$$
(105)

or

$$\delta > \frac{\sqrt{2}}{T\sqrt{N}} \tag{106}$$

A more precise estimate of the spectroscopic sensitivity of the method. Amusingly independent of the interferometer phase. Ranges as \sqrt{N} as expected for independent measurements.

- Take into account spontaneous emission
- Take into account all other sources of damping
- Take into account fluctuating fields acting on the atom
- An opportunity to introduce the formal treatment of relaxation in quantum mechanics in a rather general frame: the Kraus operators and the Lindblad master equation

System and environment

- Quantum system S (the atom here) coupled to an environment \mathcal{E} . Jointly in a pure state $|\Psi_{S\mathcal{E}}\rangle$.
- We are interested only in ρ_S , obtained by tracing the projector $|\Psi_{SE}\rangle \langle \Psi_{SE}|$ over the environment (the state of the environment is forever inaccessible).
- We seek an evolution equation for ρ_S alone.

Kraus operators

Transformation of the system's density matrix during a short time interval

$$\rho(t) \longrightarrow \rho(t+\tau)$$
(107)

- $\tau \gg \tau_c$, correlation time of the reservoir observables, so that there are no coherent effects in the system-reservoir interaction
- This transformation is a 'quantum map'

$$\mathcal{L}(\rho(t)) = \rho(T + \tau) \tag{108}$$

Kraus operators

Mathematical properties of a proper quantum map:

- Linear operation, i.e. a super-operator in a space of dimension N_S^2 (N_S system's Hilbert space dimension).
- Preserve unit trace and positivity (a density operator does not have any negative eigenvalue).
- "Completely positive". If, at a time t, S entangled with S', L acting on S alone leads to a completely positive density operator for the joint state of S and S' (not all maps are completely positive e.g. partial transpose).

Kraus operators

Any completely positive map can be written as

$$\mathcal{L}(\rho) = \sum_{\mu} M_{\mu} \rho M_{\mu}^{\dagger}$$
(109)

with the normalization condition

$$\sum_{\mu} M^{\dagger}_{\mu} M_{\mu} = \mathbb{1}$$
 (110)

There are at most N_S^2 'Kraus' operators M_μ , which are not uniquely defined (same map when mixing the M_μ by a linear unitary matrix V: $M'\mu = V_{\mu\nu}M_\nu$).

イロト 不得 トイヨト イヨト 二日

Kraus operators

Fit also in this representation:

Hamiltonian evolution

$$\rho(t+\tau) = U(\tau)\rho U^{\dagger}(\tau)$$
(111)

• 'unread' generalized measurement

$$\rho \longrightarrow \sum_{\mu} O_{\mu} \rho O_{\mu}^{\dagger} \tag{112}$$

but not a measurement whose result $\boldsymbol{\mu}$ is known

$$\rho \longrightarrow \frac{O_{\mu}\rho O_{\mu}^{\dagger}}{\operatorname{Tr}(O_{\mu}\rho O_{\mu}^{\dagger})}$$
(113)

(non-linear normalization term in the denominator)

J.M. Raimond

Lindblad equation

Kraus representation and differential representation of the map

$$\rho(t+\tau) = \sum_{\mu} M_{\mu}\rho M_{\mu}^{\dagger} \approx \rho(t) + \frac{d\rho}{dt}\tau$$
(114)

- Environment unaffected by the system: the M_{μ} s do not depend upon time t.
- They, however, depend clearly upon the tiny time interval τ .
- One and only one of the M_{μ} s is thus of the order of unity and all others must then be of order $\sqrt{\tau}$.

$$M_0 = \mathbf{1} - iK\tau \tag{115}$$

$$M_{\mu} = \sqrt{\tau} L_{\mu}$$
 for $\mu \neq 0$ (116)

K, having no particular properties, can be split in hermitian and anti-hermitian parts:

$$K = \frac{H}{\hbar} - iJ , \qquad (117)$$

where

$$H = \frac{\hbar}{2} \left(K + K^{\dagger} \right)$$
(118)
$$J = \frac{i}{2} \left(K - K^{\dagger} \right)$$
(119)

are both hermitian.

$$M_0 = \mathbb{1} - \frac{I\tau}{\hbar} H - J\tau \tag{120}$$

.

3

(日) (周) (三) (三)

Lindblad equation Thus

$$M_0 \rho M_0^{\dagger} = \rho - \frac{i\tau}{\hbar} \left[H, \rho \right] - \tau \left[J, \rho \right]_+$$
(121)

where $\left[J,\rho\right]_{+}=J\rho+\rho J$ is an anti-commutator.

 $M_0^{\dagger}M_0 = \mathbb{1} - 2J\tau$ and thus, by normalization since $\sum_{\mu} M_{\mu}^{\dagger}M_{\mu} = \mathbb{1}$ (122)

$$J = \frac{1}{2} \sum_{\mu \neq 0} L^{\dagger}_{\mu} L_{\mu}$$
(123)

"Lindblad form" of the master equation

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[H,\rho\right] + \sum_{\mu\neq 0} \left(L_{\mu}\rho L_{\mu}^{\dagger} - \frac{1}{2}L_{\mu}^{\dagger}L_{\mu}\rho - \frac{1}{2}\rho L_{\mu}^{\dagger}L_{\mu} \right)$$
(124)

Quantum jumps

Consider a single time interval τ in the simple situation where the initial state is pure $\rho(0) = |\Psi\rangle \langle \Psi|$, with no Hamiltonian evolution. Then

$$\rho(\tau) = |\Psi\rangle \langle \Psi| + \tau \sum_{\mu} \left(L_{\mu} |\Psi\rangle \right) \left(\langle \Psi| L_{\mu}^{\dagger} \right)$$
(125)

- Density matrix at time τ is a statistical mixture of the initial pure state (with a large probability of order 1) and of projectors on the states L_μ |Ψ⟩.
- The L_{μ} s are 'jump operators' which describe a random (possibly large) evolution of the system which suddenly (at the time scale of the evolution) changes under the influence of the environment.
- Intuitive picture of quantum jumps for an atom emitting a single photon

50 / 112

イロト 不得 トイヨト イヨト 二日

Quantum jumps

- The quantum jump operators are not defined unambiguously. Again, the same master equation can be recovered from different sets of $M_{\mu}s$ (or $L_{\mu}s$) linked together by a unitary transformation matrix. Different choices correspond to the so-called 'unravelings' of the master equation.
- In some situations, the quantum jumps have a direct physical meaning. e.g. emitting atom completely surrounded by a photo-detector array. The quantum jump then corresponds to a click of one detector. Different unravelings may then correspond to different ways of monitoring the environment, in this case to different detectors (photon counters, homodyne recievers...)
- In other situations, the quantum jumps are an abstract representation of the system+environment evolution.

イロト 不得 トイヨト イヨト 二日

Quantum trajectories

- Even when the environment is not explicitly monitored, one may imagine that it is done. We then imagine we have full information about which quantum jump occurs when.
- The system is thus, at any time, in a pure state, which undergoes a stochastic trajectory in the Hilbert space, made up of continuous Hamiltonian evolutions interleaved with sudden quantum jumps.
- However, since we only imagine the information is available, we should describe the evolution of the density operator by averaging the system evolution over all possible trajectories.
- The 'environment simulator' concept provides a simple recipe to perform this averaging.

3

Environment simulator

 ${\cal B}$ coupled to ${\cal S}$ so that the reduced dynamics for ${\cal S}$ is the same as when coupled to ${\cal E}.$

- ${\cal B}$ prepared in the same reference state $|0\rangle$ at the start of each time interval τ
- Hamiltonian evolution of $\mathcal{S} + \mathcal{B}$ during the time interval au

$$U_{SB} |\Psi\rangle \otimes |0\rangle = M_0 |\Psi\rangle \otimes |0\rangle + \sqrt{\tau} \sum_{\mu} (L_{\mu} |\Psi\rangle) \otimes |\mu\rangle$$
(126)

• Unread measurement of O_B having the $|\mu\rangle$ s as non degenerate eigenstates, with μ as the eigenvalue. This measurement tells which jump has happened if any.

Environment simulator

- At the end of the time interval τ :
 - With a probability $p_0 = \langle \Psi | M_0^{\dagger} M_0 | \Psi \rangle = \operatorname{Tr}(\rho M_0^{\dagger} M_0) = 1 \tau \sum_{\mu \neq 0} \operatorname{Tr}(\rho L_{\mu}^{\dagger} L_{\mu}) = 1 \sum_{\mu \neq 0} p_{\mu}$, the result is 0, no jump and

$$\frac{M_{0}\left|\Psi\right\rangle}{\sqrt{P_{0}}} = \frac{1 - iH\tau/\hbar - J\tau}{\sqrt{P_{0}}}\left|\Psi\right\rangle \tag{127}$$

Evolution can be interpreted as resulting from evolution in the non-hermitian Hamiltonian

$$H_{eff} = H - i\hbar J \tag{128}$$

• With a probability $p_{\mu} = \tau \operatorname{Tr}(\rho L_{\mu}^{\dagger} L_{\mu})$, the result is μ and the system's state is accordingly projected onto $M_{\mu} |\Psi\rangle / \sqrt{p_{\mu}} = L_{\mu} |\Psi\rangle / \sqrt{p_{\mu}/\tau}$. The quantum trajectory is defined by the repetition of such steps.

Environment simulator

We have no access to the environment state in most real cases.

- Recovers the right evolution during τ by averaging all projectors on all possible final pure states (with proper measurement probability weights).
- Recovers the full density operator evolution by averaging the projectors on all possible quantum trajectory states.
- Full mathematical equivalence between this average and the solution of the Lindblad equation.
- Leads to an efficient numerical method for solving Lindblad equations.

Quantum Monte Carlo trajectories

- Initialize the state (randomly chosen eigenstate $|\Psi
 angle$ of ho)
- For each time interval au, evolve $|\Psi
 angle$ according to:
 - Compute $p_{\mu} = \tau \langle \Psi | L^{\dagger}_{\mu} L_{\mu} | \Psi \rangle$ and $p_0 = 1 \sum_{\mu \neq 0} p_{\mu}$.
 - ► Use a (good) random number generator to decide upon the result of the measurement of B.
 - \blacktriangleright If the result of the measurement is zero, evolve $|\Psi\rangle$ with

$$|\Psi\rangle \longrightarrow \frac{1 - iH\tau/\hbar - J\tau}{\sqrt{\rho_0}} |\Psi\rangle$$
 (129)

• If the result of the measurement is $\mu \neq 0$, evolve $|\Psi\rangle$ by:

$$|\Psi\rangle \longrightarrow \frac{L_{\mu}}{\sqrt{\langle \Psi | L_{\mu}^{\dagger} I_{\mu} |\Psi \rangle}} |\Psi\rangle = \frac{L_{\mu}}{\sqrt{\rho_{\mu}/\tau}} |\Psi\rangle$$
(130)

- Repeat the procedure for many trajectories
- Average the projectors $ho(t) = \overline{\ket{\Psi(t)}ra{\Psi(t)}}$

Atomic relaxation Quantum Monte Carlo trajectories

Interest of the Monte Carlo method:

- For each trajectory computes only a state vector with N_S dimensions i.e. N_S coupled differential equations, instead of N_S^2 equations for the full density operator.
- Neeeds a statistical sample of trajectories. A few hundreds is enough to get a qualitative solution. Method more efficient than the direct integration when N_S is larger than a few hundreds.
- Gives a physical picture of the relaxation process (see below).

An extremely useful method, with thousands of applications.

Spontaneous emission

A practical (and important) example. Optical transition: Zero temperature model.

A single jump operator (describing photon emission in a downwards transition)

$$L = \sqrt{\Gamma}\sigma_{-} \tag{131}$$

with $\Gamma=1/{\it T}_1$ ('longitudinal relaxation time'). Lindblad equation

$$\frac{d\rho}{dt} = \Gamma \left(\sigma_{-}\rho\sigma_{+} - \frac{1}{2}\sigma_{+}\sigma_{-}\rho - \frac{1}{2}\rho\sigma_{+}\sigma_{-} \right)$$
(132)

э.

58 / 112

イロト イポト イヨト イヨト

Spontaneous emission

With

$$\rho = \begin{pmatrix} \rho_{ee} & \rho_{eg} \\ \rho_{ge} & \rho_{gg} \end{pmatrix}$$
(133)

the solution of the Lindblad equation is

$$\frac{d\rho_{ee}}{dt} = -\Gamma\rho_{ee}$$
(134)
$$\frac{d\rho_{eg}}{dt} = -\frac{\Gamma}{2}\rho_{eg}$$
(135)

- Relaxation of excited state population with a rate Γ .
- Relaxation of coherence with a rate $\Gamma/2$ (compatible with $\rho_{eg} \leq \sqrt{\rho_{ee}\rho_{gg}}$)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Phase damping

Model atomic relaxation due to random fields altering the atomic frequency and scrambling the coherence phase.

- Jump operator $\sqrt{\gamma/2}\sigma_z$ with $\gamma = 1/T_2$ the 'transverse' relaxation rate and T_2 the transverse relaxation time. Models sudden phase shifts of coherences.
- No damping of the populations, but coherences damped at rate γ .
- Complete Lindblad equation with spontaneous emission

$$\frac{d\rho_{ee}}{dt} = -\Gamma\rho_{ee} \tag{136}$$

$$\frac{d\rho_{eg}}{dt} = -\frac{\Gamma}{2}\rho_{eg} - \gamma\rho_{eg} = -\gamma'\rho_{eg} \qquad (137)$$

where we define the total relaxation rate of the coherence by:

$$\gamma' = \gamma + \frac{\Gamma}{2} \tag{138}$$

Spontaneous emission

Case of an initial superposition state $|\Psi_0\rangle = (1/\sqrt{2})(|e\rangle + |g\rangle)$. Analysis in terms of the Monte Carlo trajectories.

• No jump evolution. With $|\Psi(t)\rangle=c_{e}\,|e\rangle+c_{g}\,|g\rangle$ and use effective Hamiltonian

$$H = -i\hbar J = -\frac{i\hbar}{2}\Gamma\sigma_{+}\sigma_{-} = -\frac{i\hbar}{2}\Gamma|e\rangle\langle e|$$
(139)

$$i\hbar \frac{dc_e}{dt} = -\frac{i\hbar}{2}\Gamma c_e \qquad c_e(t) = c_e(0)e^{-\Gamma t/2} \qquad \frac{dc_g}{dt} = 0$$
(140)
$$|\Psi(t)\rangle = \frac{1}{|c_e(0)|^2 e^{-\Gamma T} + |c_g(0)|^2} \left(c_e(0)e^{-\Gamma t/2} |e\rangle + c_g(0)|g\rangle\right)$$
(141)

A negative detection (no photon emitted) changes the system's state. • Jump: state becomes $|g\rangle$. No further evolution.

E A E A E AQA

Optical Bloch equations

- Merge the atom-field interaction and the relaxation (phase damping and/or spontaneous emission) in a single set of equations.
- Analyse the immediate consequences of these equations.

Optical Bloch equations

The equations

Hamiltonian in interaction representation w.r.t. the field frequency:

$$H = \frac{\hbar\Delta}{2}\sigma_z - \frac{\hbar\Omega}{2}\left(\sigma_+ e^{-i\varphi} + \sigma_- e^{i\varphi}\right) \tag{142}$$

with $\Omega = dE_0/\hbar$ and $\Delta = \omega_{eg} - \omega$ and

$$E_1 = E_0 e^{-i\varphi} \tag{143}$$

3

Optical Bloch equations The equations

_

Coherent evolution of ρ ruled by the Schrödinger equation:

$$\frac{d\rho_{ee}}{dt} = \Omega \operatorname{Im} \left(\rho_{eg} e^{i\varphi} \right)$$

$$= \frac{d}{\hbar} \operatorname{Im} \left(\rho_{eg} E_1^* \right)$$
(144)

and

$$\frac{d\rho_{eg}}{dt} = -i\Delta\rho_{eg} + i\frac{\Omega}{2}e^{-i\varphi}(\rho_{gg} - \rho_{ee})$$
$$= -i\Delta\rho_{eg} - i\frac{d}{2\hbar}E_1(\rho_{ee} - \rho_{gg})$$
(145)

< □ > < ---->

→

3

Optical Bloch equations The equations

Add relaxation (assume mere addition of evolution terms and note that Lindblad equation terms are not changed in interaction representation)

$$\frac{d\rho_{ee}}{dt} = \frac{d}{\hbar} \operatorname{Im} \left(\rho_{eg} E_1^* \right) - \Gamma \rho_{ee}$$
(146)

$$\frac{d\rho_{eg}}{dt} = -i\Delta\rho_{eg} - i\frac{d}{2\hbar}E_1(\rho_{ee} - \rho_{gg}) - \gamma'\rho_{eg}$$
(147)

with $\Gamma=1/\mathit{T}_1$ and $\gamma'=(1/2\mathit{T}_1)+1/\mathit{T}_2$

イロト 不得 トイヨト イヨト 二日

Optical Bloch equations Equivalent forms

Introducing

- The populations $N_e = \rho_{ee}$ and $N_g = \rho_{gg}$
- The complex dipole amplitude

$$\mathcal{D} = 2d\rho_{eg} \tag{148}$$

so that the average value of the dipole in state ρ is Re \mathcal{D} We get:

$$\frac{dN_e}{dt} = \frac{1}{2\hbar} \operatorname{Im} \left(\mathcal{D} E_1^* \right) - \Gamma N_e \tag{149}$$

$$\frac{d\mathcal{D}}{dt} = -i\Delta\mathcal{D} - \gamma'\mathcal{D} - i\frac{d^2E_1}{\hbar}(N_e - N_g)$$
(150)

3

Optical Bloch equations

Equivalent forms

Introducing the Bloch vector $\mathbf{r} = (x, y, z)$ so that

$$\rho = \frac{1 + \mathbf{r} \cdot \boldsymbol{\sigma}}{2} \tag{151}$$

or

$$\rho = \frac{1}{2} \begin{pmatrix} 1+z & x-iy\\ x+iy & 1-z \end{pmatrix}$$
(152)

$$x = 2\operatorname{Re}\rho_{eg} \qquad y = -2\operatorname{Im}\rho_{eg} \qquad z = 2\rho_{ee} - 1 \tag{153}$$

With $E_1 = E_x + iE_y$

$$\frac{dz}{dt} = -\frac{d}{\hbar}(xE_y + yE_x) - \Gamma(1+z)$$
(154)

$$\frac{dx}{dt} = -\Delta y + \frac{d}{\hbar} z E_y - \gamma' x \qquad (155)$$

$$\frac{dy}{dt} = +\Delta x + \frac{d}{\hbar} z E_x - \gamma' y \qquad (156)$$

イロト 不得 トイヨト イヨト

67 / 112

3
Rabi oscillations revisited

Rabi oscillations with relaxation. Simplifying hypotheses:

- Initial state $|g\rangle$ corresponding to z = -1 and x = y = 0.
- The field is purely real: $E_y = 0$, $E_x = +E_0$
- Atom and field are at resonance: $\Delta = 0$.

$$\frac{dz}{dt} = -\Omega y - \Gamma(1+z)$$

$$\frac{dy}{dt} = \Omega z - \gamma' y$$
(157)
(157)

x = 0 at any time.

$$\frac{d^2z}{dt^2} + (\Gamma + \gamma')\frac{dz}{dt} + (\Omega^2 + \gamma'\Gamma) z = -\gamma'\Gamma$$
(159)

э.

イロト イポト イヨト イヨト

Rabi oscillations revisited

Steady state:

$$z_{s} = -\frac{\gamma'\Gamma}{\Omega^{2} + \gamma'\Gamma}$$
(160)
$$y_{s} = \frac{\Omega}{\gamma'} z = -\frac{\Omega\Gamma}{\Omega^{2} + \gamma'\Gamma}$$
(161)

• For
$$\Omega \rightarrow 0$$
, $y_s = 0$ and $z_s = -1$
• For $\Omega \rightarrow \infty$, $z_s = y_s = 0$

2

소리가 소문가 소문가 소문가 ...

Rabi oscillations revisited

Transient regime. Simplifying hypotheses:

- $\gamma' = \Gamma/2$: no transverse relaxation
- $\Omega \gg \Gamma$: Strong drive

$$\frac{d^2z}{dt^2} + \frac{3\Gamma}{2}\frac{dz}{dt} + \Omega^2 z = 0$$
(162)

Solution:

$$z(t) = -\cos(\Omega t)e^{-3\Gamma t/2}$$
(163)

an exponentially damped Rabi oscillation at the frequency Ω .

ΝЛ	Raimon	а.
 v	1 annon	ч.

3

くほと くほと くほと

Optical Bloch equations Rabi oscillations revisited

A simple interpretation in terms of quantum trajectories (only spontaneous emission relaxation)

- Before the first jump, an uninterrupted Rabi oscillation
- The first jump projects the atom in |g
 angle and restarts the Rabi oscillation
- The occurrence of random jumps thus dephase the oscillations corresponding to different trajectories
- Hence an exponential damping of the Rabi oscillation amplitude.

Oscillator strength revisited

Return to the hypotheses of first paragraph

- Atom initially in |g
 angle
- Detuned field $\Delta \gg \Gamma, \gamma',$ hence $\textit{N}_{g} \approx 1$

We determine the steady state complex dipole $\mathcal{D}=2d\rho_{ge}$ from

$$\frac{d\mathcal{D}}{dt} = -i\Delta\mathcal{D} - \gamma'\mathcal{D} - i\frac{d^2E_1}{\hbar}(N_e - N_g)$$
(164)

$$\mathcal{D}_{s} = \frac{d^{2}}{\hbar\Delta} E_{1} = \frac{q^{2} |\langle e| \, z \, |g \rangle |^{2}}{\hbar(\omega_{eg} - \omega)} E_{1}$$
(165)

and define the quantum polarizability as

$$\alpha_{Q} = \frac{q^{2}}{\hbar(\omega_{eg} - \omega)} |\langle e | z | g \rangle|^{2}$$
(166)

3

Optical Bloch equations Oscillator strength revisited

Comparing the quantum and the classical polarizability:

$$\alpha_c = \frac{q^2}{2m\epsilon_0\omega_{eg}} \frac{1}{\omega_{eg} - \omega}$$
(167)

we get back the 'oscillator strength' (a mere consistency check)

$$f = \frac{2m\omega_{eg}}{\hbar} |\langle e| \, z \, |g\rangle|^2 \tag{168}$$

Two limit cases Back to Einstein coefficients

Recover the Einstein coefficients as a limit case of the Optical Bloch Equations in two limit cases

- Strong transverse damping $\gamma'\approx\gamma$
- Stochastic, noisy driving field

In both cases, stochasticity turns the coherent Rabi oscillation into transfer rates à la Einstein

Strong transverse relaxation

Assume $\gamma' \approx \gamma$ and $\Gamma \ll \gamma'$. Use again

$$\frac{d\mathcal{D}}{dt} = -i\Delta\mathcal{D} - \gamma'\mathcal{D} - i\frac{d^2E_1}{\hbar}(N_e - N_g)$$
(169)

Fast relaxation allows to neglect dD/dt. Assume thus that the dipole is at any time in the steady state value:

$$\mathcal{D} = \frac{i}{\gamma' + i\Delta} \frac{d^2 E_1}{\hbar} (N_g - N_e)$$
(170)

Inject in the equation of motion for N_e :

$$\frac{dN_e}{dt} = -\Gamma N_e + \frac{1}{2\hbar} \operatorname{Im} \left[\frac{i}{\gamma' + i\Delta} \frac{d^2 E_1}{\hbar} (N_g - N_e) E_1^* \right]$$
$$= -\Gamma N_e + \frac{d^2 E_0^2}{2\hbar^2} (N_g - N_e) \frac{\gamma'}{\gamma'^2 + \Delta^2}$$
(171)

くぼう くほう くほう

Strong transverse relaxation

Assume a small but finite frequency bandwidth for the electric field: $E_0^2 \propto u_{\nu_0}$. Make field resonant ($\Delta = 0$).

$$\frac{dN_e}{dt} = -\Gamma N_e + \frac{d^2 E_0^2}{2\hbar^2 \gamma'} (N_g - N_e) = -\Gamma N_e + \frac{\Omega^2}{2\gamma'} (N_g - N_e)$$
(172)

$$\frac{dN_e}{dt} = A_{eg}N_e + (B_{ge}u_\nu N_g - B_{eg}u_\nu N_e)$$
(173)

with the evident correspondence $A_{eg}=\Gamma$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stochastic fields

Described in terms of a slowly variable complex amplitude $E_1(t)$ modulating an oscillation at the average frequency $\overline{\omega}$:

$$E(t) = E_1(t)e^{-i\overline{\omega}t}$$
(174)

Stochastic properties encoded in the autocorrelation function:

$$\Gamma_{E}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{t}^{t+T} E_{1}^{*}(t') E_{1}(t'-\tau) dt'$$
(175)

or, within an ergodic hypothesis

$$\Gamma_E(\tau) = \overline{E_1^*(t)E_1(t-\tau)}$$
(176)

where the overline denotes an average over very many realizations of the source. Γ_E has a width τ_c (defining the source correlation time). Note

$$\Gamma_E(-\tau) = \overline{E_1^*(t)E_1(t+\tau)} = \overline{E_1^*(t'-\tau)E_1(t')} = \Gamma_E^*(\tau)$$
(177)

Spectral density of radiation $S_E(\omega)$:

.

$$S_E(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\tau \, \Gamma_E(\tau) e^{-i\omega\tau}$$
(178)

real due to (177). Spectrum of the source: spectral density translated by $\overline{\omega}$. Width of the order of $1/\tau_c$.

3

イロト イポト イヨト イヨト

Stochastic fields

Since $E_1(t)$ varies slowly at the time scale of the optical frequency:

$$\frac{d\rho_{eg}}{dt} = -i\Delta\rho_{eg} - \gamma'\rho_{eg} - \frac{id}{2\hbar}E_1(t)(\rho_{ee} - \rho_{gg})$$
(179)

where Δ is now $\omega_{eg} - \overline{\omega}$. Defining

$$\widetilde{\rho_{eg}} = \rho_{eg} e^{(i\Delta + \gamma')t} \tag{180}$$

we get

$$\widetilde{\rho_{eg}}(t) = -\frac{id}{2\hbar} \int_0^t E_1(t')(\rho_{ee} - \rho_{gg})(t')e^{(i\Delta + \gamma')t'} dt' \qquad (181)$$

With $\rho_{eg} = \widetilde{\rho_{eg}} \exp[-(i\Delta + \gamma')t]$:

$$\rho_{eg}(t) = -\frac{id}{2\hbar} \int_0^t E_1(t')(\rho_{ee} - \rho_{gg})(t') e^{(-i\Delta - \gamma')(t-t')} dt'$$
(182)

3

Plug the expression of $\rho_{eg}(t)$ in the equation of the populations:

$$\frac{d\rho_{ee}}{dt} = -\Gamma\rho_{ee} - \frac{d^2}{2\hbar^2} \operatorname{Re} \int_0^t E_1^*(t) E_1(t') (\rho_{ee} - \rho_{gg})(t') e^{(-i\Delta - \gamma')(t-t')} dt'$$
(183)
Settting $t - t' = \tau$, or $t' = t - \tau$ ($0 \le \tau \le t$)

$$\frac{d\rho_{ee}}{dt} = -\Gamma\rho_{ee} - \frac{d^2}{2\hbar^2} \operatorname{Re} \int_0^t E_1(t-\tau) E_1^*(t) (\rho_{ee} - \rho_{gg})(t-\tau) e^{(-i\Delta - \gamma')\tau} d\tau$$
(184)

æ

(日) (周) (三) (三)

Perform an ensemble average of the evolution equations (leaving ρ invariant)

$$\frac{d\rho_{ee}}{dt} = -\Gamma\rho_{ee} - \frac{d^2}{2\hbar^2} \operatorname{Re} \int_0^t \Gamma_E(\tau) (\rho_{ee} - \rho_{gg}) (t - \tau) e^{(-i\Delta - \gamma')\tau} d\tau$$
(185)

Short source correlation time τ_c .

- Replace $(\rho_{ee} \rho_{gg})(t \tau)$ by $(\rho_{ee} \rho_{gg})(t)$
- Extend upper integral bound to infinity

3

Final equation of motion:

$$\frac{d\rho_{ee}}{dt} = -\Gamma\rho_{ee} - C(\Delta)(\rho_{ee} - \rho_{gg})$$
(186)

where

$$C(\Delta) = \frac{d^2}{2\hbar^2} \operatorname{Re} \int_0^\infty \Gamma_E(\tau) e^{(-i\Delta - \gamma')\tau} d\tau$$
(187)

Neglect the transverse relaxation rate γ' compared to the field frequency width.

$$C(\Delta) = \frac{d^2}{2\hbar^2} \operatorname{Re} \int_0^\infty \Gamma_E(\tau) e^{-i\Delta\tau} d\tau$$
(188)

Image: Image:

3

Stochastic fields

Link with spectral density:

$$2\pi S_E(\Delta) = \int_{-\infty}^0 \, \Gamma_E(\tau) e^{-i\Delta\tau} \, d\tau + \int_0^\infty \, \Gamma_E(\tau) e^{-i\Delta\tau} \, d\tau \qquad (189)$$

With $\Gamma_E(-\tau) = \Gamma_E^*(\tau)$:

$$\int_{-\infty}^{0} \Gamma_{E}(\tau) e^{-i\Delta\tau} d\tau = \int_{0}^{\infty} \Gamma_{E}(-\tau) e^{i\Delta\tau} d\tau = \left(\int_{0}^{\infty} \Gamma_{E}(\tau) e^{-i\Delta\tau} d\tau\right)^{*}$$
(190)

Hence,

$$2\pi S_E(\Delta) = 2\operatorname{Re} \int_0^\infty \, \Gamma_E(\tau) e^{-i\Delta\tau} \, d\tau \tag{191}$$

and, finally

$$C(\Delta) = \frac{\pi d^2}{2\hbar^2} S_E(\Delta) \tag{192}$$

Two limit cases Einstein at last

Assuming finally the resonance condition ($\Delta = 0$) and noting that

$$u_{\nu} = 2\pi^2 \epsilon_0 S_E(0) \tag{193}$$

we get

$$C(0) = C = B_{eg} u_{\nu} \tag{194}$$

and

$$B_{eg} = \frac{d^2}{4\pi\epsilon_0\hbar^2} \tag{195}$$

Image: Image:

and finally

$$\frac{dN_e}{dt} = -A_{eg}N_e + B_{eg}u_\nu(N_g - N_e)$$
(196)

3

Two limit cases Einstein at last

The value of B_{eg} obtained here differs by a factor 3/2 from that obtained from

$$A_{eg} = \frac{d^2 \omega^3}{3\pi\epsilon_0 \hbar c^3} \tag{197}$$

which is

$$B_{eg} = \frac{d^2}{6\pi\epsilon_0\hbar^2} \tag{198}$$

Reason: no averaging over polarizations in our calculation.

3

イロト 不得下 イヨト イヨト

Spectrum of a lamp

An exercise on autocorrelation functions. Spontaneous emission by a large ensemble of atoms. Train of exponentially damped pulses (N_p per unit time) with random relative phases:

$$E_{1}(t) = \sum_{i=-\infty}^{\infty} E_{0} e^{i\phi_{i}} e^{-(t-t_{i})/\tau_{e}} \Theta(t-t_{i})$$
(199)

$$\Gamma_E = N_p T \gamma_e \tag{200}$$

with

$$\gamma_{E}(\tau) = \frac{1}{T} E_{0}^{2} \int_{0}^{T} e^{-t/\tau_{e}} e^{-(t-\tau)/\tau_{e}} \Theta(t-\tau) dt$$
(201)

$$\gamma_{E}(\tau) = \frac{1}{T} E_{0}^{2} \left[\int_{\tau}^{\infty} e^{-2t/\tau_{e}} dt \right] e^{\tau/\tau_{e}} \\ = \frac{1}{T} E_{0}^{2} \frac{\tau_{e}}{2} e^{-|\tau|/\tau_{e}}$$
(202)

Two limit cases Spectrum of a lamp

Finally

$$\Gamma_{E}(\tau) = N_{p} E_{0}^{2} \frac{\tau_{e}}{2} e^{-|\tau|/\tau_{e}}$$
(203)

and

$$S_E(\omega) = \frac{N_p E_0^2}{\pi} \frac{1}{\omega^2 + (1/\tau_e)^2}$$
(204)

a Lorentzian spectrum with a width $1/\tau_e.$

э

イロト イポト イヨト イヨト

Applications

Explore direct applications of the Optical Bloch equations:

- Steady-state and Saturation
- Optical pumping
- Dark resonance and EIT
- Light shifts and Autler Townes splitting
- Maxwell Bloch equations

э

Classical model (chapter 1): power given to the matter by the field

$$\mathcal{E} = \frac{1}{2} \epsilon_0 \omega \chi'' |E_1|^2 = \frac{1}{2} \epsilon_0 \omega \mathcal{N} \alpha'' |E_1|^2$$
(205)

where \mathcal{N} is the number of atoms in the medium (the populations in the Bloch equations sum to one so that the number of atoms in $|e\rangle$ is $\mathcal{N}N_z$) The complex dipole amplitude D is $D = \epsilon_0 \alpha E_1$ and thus

$$\mathcal{E} = \mathcal{N} \frac{\omega E_1}{2} \operatorname{Im} D \tag{206}$$

Linear function of the incoming power. An unrealistic model: an atom cannot diffuse a MW laser field. What is the prediction of the OBEs?

Steady state power

Replace in the classical expression of the energy exchange the dipole by \mathcal{D} . Recall the OBEs and assume E_1 real without loss of generality

$$\frac{dN_e}{dt} = \frac{1}{2\hbar} \operatorname{Im} \left(\mathcal{D}E_1 \right) - \Gamma N_e \qquad (207)$$
$$\frac{d\mathcal{D}}{dt} = -i\Delta \mathcal{D} - \gamma' \mathcal{D} - i \frac{d^2 E_1}{\hbar} (N_e - N_g) \qquad (208)$$

In the steady state:

$$\mathcal{D} = \frac{\Delta + i\gamma'}{\Delta^2 + {\gamma'}^2} \frac{d^2 E_1}{\hbar} (N_g - N_e)$$
(209)

Steady state power

Similarly, the steady state value of N_e is

$$N_{e} = \frac{d^{2}E_{1}^{2}}{2\hbar^{2}\Gamma} (N_{g} - N_{e}) \frac{\gamma'}{\Delta^{2} + {\gamma'}^{2}}$$
(210)

Introducing the Rabi frequency $\Omega = dE_1/\hbar$ and defining the saturation parameter:

$$s = \frac{\Omega^2}{\Gamma \gamma'} \frac{1}{1 + \Delta^2 / \gamma'^2} , \qquad (211)$$

which has a Lorentzian variation with the atom-field detuning $\Delta,$ we arrive at

$$N_e = \frac{s/2}{1+s}$$
 (212)
 $N_g - N_e = \frac{1}{1+s}$, (213)

Steady state power

We get also \mathcal{D} such that

$$|\mathcal{D}|^2 = d^2 \frac{\Gamma}{\gamma'} \frac{s}{(1+s)^2} . \qquad (214)$$

and finally

$$\mathcal{E} = \frac{\mathcal{N}\hbar\omega\Gamma}{2}\frac{s}{1+s} , \qquad (215)$$

always positive, since there can be no population inversion. The absorbed energy has a Lorentzian shape for a small saturation parameter ($s \ll 1$; small Rabi frequency).

Saturation intensity

At resonance $(\Delta = 0)$ the 'saturation parameter' $s = s_0$ is:

and

$$\mathcal{E} = \mathcal{N} \frac{\hbar\omega}{2} \Gamma \frac{s_0}{1+s_0} \tag{217}$$

 At low power, *E* is proportional to s₀ i.e. to the incoming field intensity. Recover classical model result

 $s_0 = \frac{\Omega^2}{\Gamma \gamma'}$

• At infinite input power,

$$\mathcal{E}_{s} = \mathcal{N}\hbar\omega\frac{\Gamma}{2} \tag{218}$$

photons scattered at a rate $\Gamma/2$.

• Onset of the saturation for $s_0 pprox 1$

3

(216)

Saturation intensity

With $s_0 = d^2 E_1^2 / \hbar^2 \Gamma \gamma'$ and an incident power per unit surface $I = \epsilon_0 c E_1^2 / 2$ then

$$s_0 = \frac{d^2 E_1^2}{\hbar^2 \Gamma \gamma'} = \frac{I}{I_s} \tag{219}$$

where the saturation intensity I_s is

$$I_{s} = \frac{\Gamma \gamma'}{d^{2}} \frac{\epsilon_{0} c}{2} \hbar^{2}$$
(220)

Consider the simple case $\gamma' = \Gamma/2$ (no additional transverse damping) then

$$I_{\rm s} = \frac{\Gamma^2}{4} \frac{\epsilon_0 c}{d^2} \hbar^2 \tag{221}$$

Steady-state and Saturation Saturation intensity

Using (anticipating again on Chapter 4)

$$\Gamma = \frac{\omega^3 d^2}{3\pi\epsilon_0 \hbar c^3} \tag{222}$$

$$I_{s} = \frac{\pi}{3} \hbar \omega \Gamma \frac{1}{\lambda^{2}} = \hbar \omega \frac{\Gamma}{2} \frac{1}{\sigma_{c}}$$
(223)

- Saturation: one photon incident in the resonant cross section of the classical model, $\sigma_c = 3\lambda^2/2\pi$, at the maximum rate of diffusion $\Gamma/2$.
- Order of magnitude: with $\Gamma=3.\,10^7~{\rm s}^{-1},~\lambda=1~\mu{\rm m}$ we get $I_{\rm s}=0.6~{\rm mW/cm}^2$

3

Saturation spectroscopy

A useful method to get rid of the Doppler broadening of atomic transitions.

Saturation spectroscopy

Resonance conditions for the two beams

- Direct beam: $\Delta = \omega_{eg} \omega = -kv_z$
- Reflected beam: $\Delta = kv'_z$
 - Out of resonance (Δ much larger than Ω and Γ), the two counterpropagating beams interact with different velocity classes due to the Doppler effect. The absorptions are independent and equivalent to one path in a medium with a double atom number 2N⁻¹. The absorbed energy is

$$\mathcal{E} = 2 \times \frac{\mathcal{N}\hbar\Omega\Gamma}{2} \frac{s_0}{1+s_0}$$
(224)

• At resonance ($\Delta = 0$), the two beams interact with the $v_z = 0$ class. The saturation parameter is doubled (twice the intensity) but the atom number is twice lower (only one class). The absorbed energy is them

$$\mathcal{E}_0 = \frac{\mathcal{N}\hbar\Omega\Gamma}{2} \frac{2s_0}{1+2s_0} \tag{225}$$

Saturation spectroscopy

Hence, the 'dip depth' is

$$\frac{\mathcal{E}_0}{\mathcal{E}} = \frac{1+s_0}{1+2s_0}$$
(226)

and its width is $\gamma'\sqrt{1+s_0}$. The best compromise corresponds to $s_0 \approx 1$, with a depth of 1/3 and a width of $2\gamma'$).

Saturation spectroscopy

Case of a multilevel atom: two nearly degenerate ground states, $|g\rangle$ and $|f\rangle$, and an excited state $|e\rangle$ (Λ system). Saturation resonances at:

ω_{ge}

- ω_{fe}
- Crossover resonance dip: direct beam resonant at ω_{fe} for $kv_z = \omega - \omega_{fe}$, saturating the $f \rightarrow e$ transition, and reflected beam probing this saturation when resonant on $|g\rangle \rightarrow |e\rangle$ if $kv_z = -(\omega - \omega_{ge})$ i.e. $\omega = \frac{\omega_{fe} + \omega_{ge}}{2}$ 227

Optical pumping

Principle

A system again. $|e\rangle$ decays towards both $|g\rangle$ and $|f\rangle$ with rates Γ_{eg} and Γ_{ef} . Goal: populate only $|f\rangle$. Method: drive selectively $|g\rangle \rightarrow |e\rangle$. After a few fluorescence cycles, $|g\rangle$ is depopulated. More quantitative approach based on Einstein's coefficients.

$$\frac{dN_e}{dt} = -(\Gamma_{eg} + \Gamma_{ef})N_e + \frac{\Omega^2}{2\gamma'}(N_g - N_e)$$
(228)
$$\frac{dN_g}{dt} = \Gamma_{eg}N_e - \frac{\Omega^2}{2\gamma'}(N_g - N_e)$$
(229)

$$\frac{dN_f}{dt} = \Gamma_{ef} N_e \tag{230}$$

with $N = N_e + N_f + N_{\sigma}$

Optical pumping

Dynamics

- Steady state: $N_e = 0$ and hence $N_g = 0$ and $N_f = N$.
- Puming dynamics. In the weak pump limit:

$$\frac{\Omega^2}{\gamma'} \ll \Gamma_{eg}, \ \Gamma_{ef}$$
 (231)

 N_e is low and at any time at a steady state value

$$N_{e} = \frac{\Omega^{2}/2\gamma'}{\Gamma_{eg} + \Gamma_{ef} + \Omega^{2}/2\gamma'} N_{g} \approx \frac{\Omega^{2}/2\gamma'}{\Gamma_{eg} + \Gamma_{ef}} N_{g}$$
(232)
$$\frac{dN_{g}}{dt} = -\Gamma_{p}N_{g}$$
(233)

where we define the optical pumping rate Γ_p by:

$$\Gamma_{p} = \frac{\Gamma_{ef}}{\Gamma_{eg} + \Gamma_{ef}} \frac{\Omega^{2}}{2\gamma'}$$
(234)

An exponential approach to the steady state.

J.M. Raimond

Dark resonances and EIT

Dark states

Again Λ system with two resonant laser fields \mathbf{E}_1 and \mathbf{E}_2 separately coupled to the $|g\rangle \rightarrow |e\rangle$ and $|f\rangle \rightarrow |e\rangle$ transitions (selection rules make $|g\rangle$ impervious to E_2 and $|f\rangle$ to E_1 . The total interaction Hamiltonian is $H_i = -\mathbf{d} \cdot (\mathbf{E}_1 + \mathbf{E}_2)$, where \mathbf{d} is the dipole operator (back to the basics). We set

$$d_{eg} = \langle e | \mathbf{d} \cdot \mathbf{E}_1 | g \rangle; \qquad d_{ef} = \langle e | \mathbf{d} \cdot \mathbf{E}_2 | f \rangle$$
(235)

A state $|\Psi_{-}\rangle = c_{g} |g\rangle + c_{f} |f\rangle$ is decoupled from the lasers $(\langle e|H_{i} |\Psi_{-}\rangle = 0)$ if $c_{g} d_{eg} + c_{f} d_{ef} = 0$ i.e.

$$c_g = rac{d_{ef}}{d}$$
 and $c_f = -rac{d_{eg}}{d}$ (236)

or

$$|\Psi_{-}\rangle = \frac{d_{ef}}{d} |g\rangle - \frac{d_{eg}}{d} |f\rangle$$
(237)

with

$$d = \sqrt{|d_{eg}|^2 + |d_{ef}|^2} \tag{238}$$

Dark resonances and EIT

Dark states

We have here written the states and the fields at a given time. This condition remains valid at all times if $|g\rangle$ and $|f\rangle$ are degenerate with lasers at resonance.

When $|g\rangle$ and $|f\rangle$ have different energies the dark state condition is maintained at any time if

$$\left|\Psi_{-}\right\rangle(t) = \frac{d_{ef}}{d} e^{-i\omega_{1}t} e^{-i\omega_{g}t} \left|g\right\rangle - \frac{d_{eg}}{d} e^{-i\omega_{2}t} e^{-i\omega_{f}t} \left|f\right\rangle$$
(239)

is, within a global phase, independent of time i.e; if $\omega_1 + \omega_g = \omega_2 + \omega_f$ or

$$\omega_1 - \omega_2 = \omega_{fg} , \qquad (240)$$

if the difference of the fields frequencies is equal to the Bohr frequency between the two ground states. This is nothing but a Raman resonance condition.

The first evidence of dark resonances has been obtained in 1976 by Gozzini and his group in Pisa

J.M. Raimond
Dark resonances and EIT Dark states

The orthogonal state $|\Psi_+\rangle$ is maximally coupled to lasers:

$$|\Psi_{+}\rangle = \frac{d_{eg}^{*}}{d}|g\rangle + \frac{d_{ef}^{*}}{d}|f\rangle$$
(241)

In presence of relaxation (spontaneous emission), we have one ground state coupled to the laser and another uncoupled. This is again an optical pumping situation. After a few emission cycles, we unconditionnaly end up in the dark state $|\Psi_{-}\rangle$. Fluorescence stops.

イロト イポト イヨト イヨト

Electromagnetically induced transparency

A system, strong drive of $|f\rangle \rightarrow |e\rangle$ (*E* at frequency ω , Rabi frequency Ω), weak probe of $|g\rangle \rightarrow |e\rangle$ (*E*', ω' , Ω'). Generalize OBES as:

$$\frac{d\rho_{ee}}{dt} = -(\Gamma_{ef} + \Gamma_{eg})\rho_{ee} - \Omega \operatorname{Im} \rho_{ef} - \Omega' \operatorname{Im} \rho_{eg} \qquad (242)$$

$$\frac{d\rho_{ff}}{dt} = \Gamma_{ef}\rho_{ee} + \Omega \operatorname{Im} \rho_{ef} \qquad (243)$$

$$\frac{d\rho_{gg}}{dt} = \Gamma_{eg}\rho_{ee} + \Omega' \operatorname{Im} \rho_{eg} \qquad (244)$$

$$\frac{d\rho_{ef}}{dt} = -\frac{\Gamma_{ef}}{2}\rho_{ef} + i\frac{\Omega}{2}(\rho_{ee} - \rho_{ff}) + i\frac{\Omega'}{2}\rho_{gf} \qquad (245)$$

$$\frac{d\rho_{eg}}{dt} = -\left(\frac{\Gamma_{eg}}{2} + i\Delta'\right)\rho_{eg} + i\frac{\Omega'}{2}(\rho_{gg} - \rho_{ee}) + i\frac{\Omega}{2}\rho_{fg} \qquad (246)$$

$$\frac{d\rho_{gf}}{dt} = -i\Delta'\rho_{gf} + i\frac{\Omega}{2}\rho_{ge} - i\frac{\Omega'}{2}\rho_{ef} \qquad (247)$$

・ロト ・聞ト ・ヨト ・ヨト

э.

Electromagnetically induced transparency

Simplify with $\Gamma_{ef} = \Gamma_{eg} = \Gamma$ and extract absorption of weak probe (absorbed energy \mathcal{E}' , proportional to Im ρ_{eg} in the steady state).

$$\mathcal{E}' \propto rac{\Gamma^2 {\Delta'}^2}{\Gamma^2 {\Delta'}^2 + 4 \left({\Delta'}^2 - \Omega^2/4\right)^2}$$
 (248)

イロト イポト イヨト イヨト

Electromagnetically induced transparency

Absorption of the probe field as a function of the detuning Δ for $\Omega = 10\Gamma$ (left) or $\Omega = 0.1\Gamma$ (right). The unit of the horizontal axis is Γ .

- ∢ ≣ →

Electromagnetically induced transparency

Slow light. In the small Ω case, the absorption has a narrow dip at resonance, whose width is only limited by the Rabi frequency. In actual experiments, the width can be only a few kHz. Hence, the (at resonance) transparent medium has an index of refraction *n* for the weak probe field varying rapidly with the detuning Δ i.e. with ω' . Since

$$v_g = \frac{c}{n + \omega' \, dn/d\omega'} \,, \tag{249}$$

the light group velocity can be made very small, 17 m/s in the original paper by Lene Hau and her group (Nature, 397, 594).

Maxwell Bloch equations

Treat propagation in an atomic medium. Maxwell:

$$\boldsymbol{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
(250)

$$\boldsymbol{\nabla}\cdot\boldsymbol{\mathsf{D}} = \boldsymbol{\mathsf{0}} \tag{251}$$

$$\boldsymbol{\nabla} \cdot \mathbf{B} = \mathbf{0} \tag{252}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \frac{\partial \mathbf{P}}{\partial t}$$
(253)

Hence, for a transverse wave

$$\Delta \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \mathbf{P}}{\partial t^2}$$
(254)

(note that we assume a low density and treat the macroscopic fields as being the local ones)

	- C - D - II	mon	_

September 12, 2016

イロト イポト イヨト イヨト

109 / 112

3

Maxwell-Bloch equations

Monochromatic plane wave in an isotropic medium

$$\mathbf{P} = P_0(z,t)e^{i(kz-\omega t)}\mathbf{u}_{\mathsf{x}} \quad \text{and} \quad \mathbf{E} = E_0(z,t)e^{i(kz-\omega t)}\mathbf{u}_{\mathsf{x}} \quad (255)$$

Hence, noting

$$\frac{\partial P_0}{\partial t} \ll \omega P_0 \tag{256}$$

and neglecting the proper time derivatives

$$\frac{\partial E_0}{\partial z} + \frac{1}{c} \frac{\partial E_0}{\partial t} = i \frac{\mu_0 \omega^2}{2k} P_0$$
(257)

with

$$\mathbf{P}_0 = N\mathcal{D} = 2Nd\rho_{eg} \tag{258}$$

$$\frac{\partial E_0}{\partial z} + \frac{1}{c} \frac{\partial E_0}{\partial t} = i \frac{\omega N d}{\epsilon_0 c} \rho_{eg}$$
(259)

3

イロト 不得下 イヨト イヨト

Maxwell-Bloch equations

Pulse propagation

A simple application: propagation in a relaxation-free medium. Atoms described by the angle $\phi(z, t)$ of the Bloch vector with the vertical axis. Assuming real quantities

$$\frac{d\phi(z,t)}{dt} = \frac{dE_0(z,t)}{\hbar} = \Omega(z,t)$$
(260)

$$\rho_{eg} = -i\sin\frac{\phi}{2} \tag{261}$$

Hence

$$\frac{\partial^2 \phi}{\partial z \partial t} + \frac{1}{c} \frac{\partial^2 \phi}{\partial t^2} = -\mu \sin \phi$$
(262)

where

$$\mu = \frac{\omega N d^2}{2\epsilon_0 \hbar c} \tag{263}$$

4 A N

э

Maxwell-Bloch equations

Pulse propagation

Using as independent variables z and the 'retarded time' $\tau = t - z/c$:

$$\frac{\partial^2 \phi}{\partial z \partial \tau} - \mu \sin \phi \tag{264}$$

Sine-Gordon equation

	imond
J.IVI. I\d	monu

э.

イロト イポト イヨト イヨト