Atoms and photons
 Chapter 3

J.M. Raimond

September 12, 2016

Outline

(1) Planck 1900

Outline

(1) Planck 1900

(2) Field eigenmodes

Outline

(1) Planck 1900

(2) Field eigenmodes
(3) Field quantization

Outline

(1) Planck 1900
(2) Field eigenmodes
(3) Field quantization
(4) Field quantum states

Outline

(1) Planck 1900
(2) Field eigenmodes
(3) Field quantization
(4) Field quantum states
(5) Beamsplitter

Outline

(1) Planck 1900
(2) Field eigenmodes
(3) Field quantization
(4) Field quantum states
(5) Beamsplitter
(6) Field relaxation

The Blackbody problem

Emission by a small hole in a heated oven. What is known at Planck's time.

- The radiation is universal
- Stefan's law

$$
\begin{equation*}
\mathcal{P}=\sigma S T^{4} \tag{1}
\end{equation*}
$$

where $\sigma=5.6710^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

- Lambert's law

$$
\begin{equation*}
d \mathcal{P}=L S \cos \theta d \Omega \tag{2}
\end{equation*}
$$

where the luminance L is related to the total density of energy in the oven $u=\int u_{\nu} d \nu$, by:

$$
\begin{align*}
L & =\frac{c u}{4 \pi} \tag{3}\\
\mathcal{P} & =\frac{c S u}{4} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
u=\frac{4}{c} \sigma T^{4} \tag{5}
\end{equation*}
$$

The Blackbody problem

Emission by a small hole in a heated oven. What is known at Planck's time?

- Wien's displacement law

$$
\begin{equation*}
u_{\nu}=\nu^{3} f\left(\frac{\nu}{T}\right) \tag{6}
\end{equation*}
$$

- Wien's phenomenological model

$$
\begin{equation*}
u_{v}=\alpha \nu^{3} e^{-\gamma \nu / T} \tag{7}
\end{equation*}
$$

- And many precise measurements of the spectrum (pyrometry).

The Blackbody problem

Counting the modes

Assume a rectangular volume for the oven, with periodic boundary conditions. Support only plane waves with $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ so that

$$
\begin{equation*}
k_{x}=\frac{2 \pi}{L_{x}} n_{x} \tag{8}
\end{equation*}
$$

where $n_{x, y, z}$ is a set of three positive or negative integers. Two orthogonal polarizations for each set of integers. Energies of all these 'modes' add up independently (detailed justification later).
N_{ν} the total number of modes $k<2 \pi \nu / c$. Number of modes per unit volume between ν and $\nu+d \nu: \rho_{\nu} d \nu$

$$
\begin{equation*}
\rho_{\nu}=\frac{1}{\mathcal{V}} \frac{d N_{\nu}}{d \nu} \tag{9}
\end{equation*}
$$

The Blackbody problem

Counting the modes

Counting the modes with a frequency lower than ν amounts to counting twice the number of points with integer coordinates in a sphere of radius $2 \pi \nu / c$:

$$
\begin{equation*}
N_{\nu}=2 \frac{\frac{4 \pi}{3}\left(\frac{2 \pi \nu}{c}\right)^{2}}{\frac{8 \pi^{3}}{\mathcal{V}}}=\frac{8 \pi}{3} \frac{\nu^{3}}{c^{3}} \mathcal{V} \tag{10}
\end{equation*}
$$

where \mathcal{V} is the box volume. Hence

$$
\begin{equation*}
\rho_{\nu}=\frac{8 \pi}{c^{3}} \nu^{2} \tag{11}
\end{equation*}
$$

The Blackbody problem

Rayleigh Jeans argument

Attribute the average thermal energy $k_{b} T$ to each mode

$$
\begin{equation*}
u_{\nu}=k_{b} T \rho_{\nu} \tag{12}
\end{equation*}
$$

- Fits with observation at low frequency
- Absurd at high frequencies: divergence of the spectrum and infinite power
Classical statistical physics fails at explaining the blackbody radiation!

The Blackbody problem

Planck's argument

The light quantum
Planck's hypothesis
The exchanges of energy between field and matter occur as multiples of a fundamental quantum

$$
\begin{equation*}
h \nu \tag{13}
\end{equation*}
$$

where h is a 'Hilfeconstant'. Hence $E=n h \nu$.
Average energy per mode (standard statistical physics)

$$
\begin{equation*}
\bar{E}=h \nu \frac{\sum_{n=0}^{\infty} n e^{-n h \nu / k_{b} T}}{\sum_{n=0}^{\infty} e^{-n h \nu / k_{b} T}} \tag{14}
\end{equation*}
$$

The Blackbody problem

Planck's argument
With $\beta=1 / k_{b} T$ and $\chi=\beta h \nu$, we note that
$\sum \exp (-\chi n)=1 /[1-\exp (-\chi)]$ and
$\sum n \exp (-\chi n)=-(d / d \chi) 1 /[1-\exp (-\chi)]=\exp (-\chi) /[1-\exp (-\chi)]^{2}$

$$
\begin{equation*}
\bar{E}=h \nu \bar{n}=h \nu \frac{1}{e^{\chi}-1} \tag{15}
\end{equation*}
$$

We finally get the Planck's law:

$$
\begin{equation*}
u_{\nu}=\frac{8 \pi h \nu^{3}}{c^{3}} \frac{1}{e^{h \nu / k_{b} T}-1} \tag{16}
\end{equation*}
$$

In excellent agreement with experiments if

$$
\begin{equation*}
h=6.6210^{-34} \mathrm{~J} / \mathrm{s} \tag{17}
\end{equation*}
$$

The Blackbody problem

Limits

- For small frequencies: Rayleigh Jeans

$$
\begin{equation*}
u_{\nu}=\frac{8 \pi \nu^{2}}{c^{3}} k_{b} T \tag{18}
\end{equation*}
$$

the classical predictions without field quantization (many photons per mode).

- For large frequencies: phenomenological Wien's law

$$
\begin{equation*}
u_{\nu}=\frac{8 \pi h \nu^{3}}{c^{3}} e^{-h \nu / k_{b} T} \tag{19}
\end{equation*}
$$

- Explicit expression of Stefan's constant

$$
\begin{equation*}
\sigma=\frac{2 \pi^{5}}{15} \frac{k_{b}^{4}}{c^{2} h^{3}} \tag{20}
\end{equation*}
$$

The Blackbody problem

Einstein 1905

A more solid justification of the heuristic Plank's hypothesis. Starting point

$$
\begin{equation*}
u_{\nu}=\alpha \nu^{3} e^{-h \nu / k_{b} T}=\alpha \nu^{3} e^{-\gamma \nu T} \tag{21}
\end{equation*}
$$

with $\gamma=h / k_{b}$. This leads by a simple inversion to:

$$
\begin{equation*}
T=-\frac{\gamma \nu}{\ln u_{\nu} / \alpha \nu^{3}} \tag{22}
\end{equation*}
$$

Density of entropy $s, d s / d u=1 / T$ and, by integration over u

$$
\begin{align*}
s & =-\int_{0}^{\infty} d u^{\prime} \frac{\ln u^{\prime} / \alpha \nu^{3}}{\gamma \nu} \\
& =-\frac{u}{\gamma \nu}\left[\ln \frac{u}{\alpha \nu^{3}}-1\right] \tag{23}
\end{align*}
$$

The Blackbody problem

Einstein 1905

Total entropy in volume $\mathcal{V}, S=s \mathcal{V}$, and total energy $E=u \mathcal{V}$ linked by

$$
\begin{equation*}
S=-\frac{E}{\gamma \nu}\left[\ln \frac{E}{\mathcal{V} \alpha \nu^{3}}-1\right] \tag{24}
\end{equation*}
$$

S_{0} the entropy for the volume \mathcal{V}_{0}

$$
\begin{equation*}
S-S_{0}=\frac{E}{\gamma \nu} \ln \frac{\mathcal{V}}{\mathcal{V}_{0}} \tag{25}
\end{equation*}
$$

Compare to the entropy variation of a perfect gas in an isothermal compression

$$
\begin{equation*}
S-S_{0}=k_{b} N \ln \frac{\mathcal{V}}{\mathcal{V}_{0}} \tag{26}
\end{equation*}
$$

where N is the total number of particles. $N k_{b}=E k_{b} / h \nu$ and $E / N=h \nu$.

Objective

To quantify the field, we must identify a set of orthogonal modes, the relevant dynamical variables and quantify them according to the 'canonical' quantization procedure. The main technical difficulty in field quantization is thus a classical electromagnetism calculation.

Eigenmodes

Positive frequency fields
Time Fourier transform of electric field

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widetilde{\mathbf{E}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega \tag{27}
\end{equation*}
$$

Since \mathbf{E} is a real field,

$$
\begin{equation*}
\widetilde{\mathbf{E}}^{*}(\mathbf{r}, \omega)=\widetilde{\mathbf{E}}(\mathbf{r},-\omega) \tag{28}
\end{equation*}
$$

Define the 'positive frequency field'

$$
\begin{equation*}
\mathbf{E}^{+}(\mathbf{r}, t)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \widetilde{\mathbf{E}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega \tag{29}
\end{equation*}
$$

and the 'negative frequency field'

$$
\begin{equation*}
\mathbf{E}^{-}(\mathbf{r}, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} \widetilde{\mathbf{E}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega=\left(\mathbf{E}^{+}(\mathbf{r}, t)\right)^{*} \tag{30}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=\mathbf{E}^{+}(\mathbf{r}, t)+\mathbf{E}^{-}(\mathbf{r}, t) \tag{31}
\end{equation*}
$$

Eigenmodes

Eigenmodes basis
'Box' of limiting conditions with a total volume \mathcal{V}. Orthogonal basis for the solutions of Maxwell equations (a Hilbert space)

$$
\begin{equation*}
\mathbf{f}_{\ell}(\mathbf{r}) e^{-i \omega_{\ell} t} \tag{32}
\end{equation*}
$$

where the dimensionless amplitude \mathbf{f}_{ℓ} is divergence-free and obeys the Helmholtz equation:

$$
\begin{equation*}
\Delta \mathbf{f}_{\ell}+\frac{\omega_{\ell}^{2}}{c^{2}} \mathbf{f}_{\ell}=0 \tag{33}
\end{equation*}
$$

Orthogonality:

$$
\begin{equation*}
\int_{\mathcal{V}} d^{3} \mathbf{r} \mathbf{f}_{\ell}^{*}(\mathbf{r}) \cdot \mathbf{f}_{\ell^{\prime}}(\mathbf{r})=\delta_{\ell, \ell^{\prime}} \mathcal{V} \tag{34}
\end{equation*}
$$

Normalization:

$$
\begin{equation*}
\int_{\mathcal{V}} d^{3} \mathbf{r}\left|\mathbf{f}_{\ell}(\mathbf{r})\right|^{2}=\mathcal{V} \tag{35}
\end{equation*}
$$

Eigenmodes

Eigenmodes basis
Expand the positive frequency field on this basis

$$
\begin{equation*}
\mathbf{E}^{+}(\mathbf{r}, t)=\sum_{\ell} \mathcal{E}_{\ell}(t) \mathbf{f}_{\ell}(\mathbf{r}) \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{E}_{\ell}(t)=\frac{1}{\mathcal{V}} \int \mathbf{E}^{+}(\mathbf{r}, t) \cdot \mathbf{f}_{\ell}^{*}(\mathbf{r}) d^{3} \mathbf{r} \tag{37}
\end{equation*}
$$

The amplitude is obviously a harmonic function of time

$$
\begin{equation*}
\mathcal{E}_{\ell}(t)=\mathcal{E}_{\ell}(0) e^{-i \omega_{\ell} t} \tag{38}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\mathbf{E}^{+}(\mathbf{r}, t)=\sum_{\ell} \mathcal{E}_{\ell}(0) e^{-i \omega_{\ell} t} \mathbf{f}_{\ell}(\mathbf{r}) \tag{39}
\end{equation*}
$$

Eigenmodes

Plane-wave basis

- A simple basis for a rectangular box and periodic boundaries.
- Set of plane waves with $\mathbf{k}_{\mathbf{n}}=\left(k_{x}, k_{y}, k_{z}\right)=\left(n_{x} 2 \pi / L_{x}, n_{y} 2 \pi / L_{y}, n_{z} 2 \pi / L_{z}\right)$, where the n s are positive or negative.
- For each $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$, two orthogonal linear polarizations ϵ_{1} and ϵ_{2}, perpendicular to $\mathbf{k}: \epsilon_{1} \times \epsilon_{2}=\mathbf{u}_{\mathbf{k}}$.
- Basis

$$
\begin{equation*}
\mathbf{f}_{\ell}(\mathbf{r})=\boldsymbol{\epsilon}_{\ell} e^{i \mathbf{k}_{\ell} \cdot \mathbf{r}} \tag{40}
\end{equation*}
$$

with $\ell=\left(n_{x}, n_{y}, n_{z}, \epsilon\right)$

- Circular polarization basis

$$
\begin{gather*}
\epsilon_{ \pm}=\frac{\epsilon_{1} \pm i \epsilon_{2}}{\sqrt{2}} \tag{41}\\
\epsilon_{+} \times \epsilon_{-}=-i \mathbf{u}_{\mathrm{k}} \tag{42}
\end{gather*}
$$

Eigenmodes

Mode basis change

Two sets of modes \mathbf{f}_{ℓ} and \mathbf{g}_{p} checking the same limiting conditions

$$
\begin{equation*}
\mathbf{f}_{\ell}=\sum_{p} U_{\ell p} \mathbf{g}_{p} \tag{43}
\end{equation*}
$$

where $U_{\ell p}$ connects only modes with the same frequency.

$$
\begin{equation*}
U_{\ell p}=\frac{1}{\mathcal{V}} \int \mathbf{f}_{\ell} \cdot \mathbf{g}_{p}^{*} d^{3} \mathbf{r} \tag{44}
\end{equation*}
$$

Eigenmodes

Mode basis change

Check that U is unitary

$$
\begin{equation*}
\delta_{\ell, \ell^{\prime}}=\frac{1}{\mathcal{V}} \int \mathbf{f}_{\ell}^{*} \cdot \mathbf{f}_{\ell^{\prime}} d^{3} \mathbf{r}=\sum_{p, p^{\prime}} U_{\ell p}^{*} U_{\ell^{\prime} p^{\prime}} \frac{1}{\mathcal{V}} \int \mathbf{g}_{p}^{*} \cdot \mathbf{g}_{p^{\prime}} d^{3} \mathbf{r} \tag{45}
\end{equation*}
$$

Using the orthonormality of \mathbf{g} :

$$
\begin{equation*}
\delta_{\ell, \ell^{\prime}}=\sum_{p} U_{\ell p}^{*} U_{\ell^{\prime} p}=\sum_{p} U_{\ell^{\prime} p} U_{p \ell}^{\dagger} \tag{46}
\end{equation*}
$$

and hence $\mathbb{1}=U U^{\dagger}$

Normal variables

Potential vector

Choose a simple set of dynamical variables. The potential vector \mathbf{A} is divergence-free in the Coulomb gauge and $\mathbf{E}=-\partial \mathbf{A} / \partial t$. Can be thus expanded on the same basis as \mathbf{E}

$$
\begin{equation*}
\mathbf{A}^{+}(\mathbf{r}, t)=\sum_{\ell} \mathcal{A}_{\ell}(t) \mathbf{f}_{\ell}(\mathbf{r}) \tag{47}
\end{equation*}
$$

Choose the $\mathcal{A}(t)$ (harmonic functions of time) as the normal variables and separate real and imaginary parts

$$
\begin{equation*}
\mathcal{A}_{\ell}(t)=\mathcal{A}_{\ell}(0) e^{-i \omega t}=x_{\ell}(t)+i p_{\ell}(t) \tag{48}
\end{equation*}
$$

Normal variables

All fields

From $\mathbf{E}^{+}=-\partial \mathbf{A}^{+} / \partial t$

$$
\begin{equation*}
\mathcal{E}_{\ell}(t)=-\frac{d \mathcal{A}_{\ell}}{d t}=i \omega_{\ell} \mathcal{A}_{\ell} \tag{49}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathbf{E}^{+}(\mathbf{r}, t)=\sum_{\ell} i \omega_{\ell} \mathcal{A}_{\ell}(t) \mathbf{f}_{\ell}(\mathbf{r}) \tag{50}
\end{equation*}
$$

Magnetic field:

$$
\begin{equation*}
\mathbf{B}^{+}(\mathbf{r}, t)=\sum_{\ell} \mathcal{A}_{\ell}(t) \mathbf{h}_{\ell}(\mathbf{r}) \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{h}_{\ell}(\mathbf{r})=\nabla \times \mathbf{f}_{\ell}(\mathbf{r}) \tag{52}
\end{equation*}
$$

Field energy

The total field energy

$$
\begin{equation*}
H=\frac{\epsilon_{0}}{2} \int E^{2}+\frac{1}{2 \mu_{0}} \int B^{2} \tag{53}
\end{equation*}
$$

must be written in terms of real fields

$$
\begin{equation*}
\mathbf{E}=2 \operatorname{Re} \mathbf{E}^{+}=2 \operatorname{Re} \sum_{\ell} i \omega_{\ell} \mathcal{A}_{\ell} \mathbf{f}_{\ell} \tag{54}
\end{equation*}
$$

Taking into account the mode orthogonality

$$
\begin{equation*}
H=\sum_{\ell} H_{\ell} \tag{55}
\end{equation*}
$$

Remains to evaluate energy of one given mode. Drop index ℓ for the time being.

Field energy

Electric energy

Real field

$$
\begin{equation*}
\mathbf{E}=i \omega\left[\mathcal{A} \mathbf{f}-\mathcal{A}^{*} \mathbf{f}^{*}\right] \tag{56}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{E}=-2 \omega\left[x \mathbf{f}^{\prime \prime}+p \mathbf{f}^{\prime}\right] \tag{57}
\end{equation*}
$$

with

$$
\begin{gather*}
\mathbf{f}=\mathbf{f}^{\prime}+i \mathbf{f}^{\prime \prime} \tag{58}\\
H_{e}=2 \omega^{2} \epsilon_{0}\left[x^{2} \int\left(\mathbf{f}^{\prime \prime}\right)^{2}+p^{2} \int\left(\mathbf{f}^{\prime}\right)^{2}+2 x p \int \mathbf{f}^{\prime} \cdot \mathbf{f}^{\prime \prime}\right] \tag{59}
\end{gather*}
$$

Field energy

Magnetic energy

With

$$
\begin{equation*}
\mathbf{B}=\mathcal{A} \mathbf{h}+\mathcal{A}^{*} \mathbf{h}^{*}=2 x \mathbf{h}^{\prime}-2 p \mathbf{h}^{\prime \prime} \tag{60}
\end{equation*}
$$

we get

$$
\begin{equation*}
H_{b}=\frac{2}{\mu_{0}}\left[x^{2} \int\left(\mathbf{h}^{\prime}\right)^{2}+p^{2} \int\left(\mathbf{h}^{\prime \prime}\right)^{2}-2 x p \int \mathbf{h}^{\prime} \cdot \mathbf{h}^{\prime \prime}\right] \tag{61}
\end{equation*}
$$

Similar, but not obviously equal, to the electric energy.

Field energy

Comparing the energies

Let us start with the integral of $\left(\mathbf{h}^{\prime}\right)^{2}$, with $\mathbf{h}=\boldsymbol{\nabla} \times \mathbf{f}$. Using

$$
\begin{equation*}
\nabla \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\nabla \times \mathbf{a})-\mathbf{a} \cdot(\nabla \times \mathbf{b}) \tag{62}
\end{equation*}
$$

we can write

$$
\begin{equation*}
\nabla \cdot\left[\mathbf{f}^{\prime} \times\left(\boldsymbol{\nabla} \times \mathbf{f}^{\prime}\right)\right]=\left(\nabla \times \mathbf{f}^{\prime}\right)^{2}-\mathbf{f}^{\prime} \cdot\left(\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{f}^{\prime}\right) \tag{63}
\end{equation*}
$$

Using that these fields are divergence-free and with Helmoltz equation:

$$
\begin{equation*}
\nabla \cdot\left[\mathbf{f}^{\prime} \times\left(\nabla \times \mathbf{f}^{\prime}\right)\right]=\left(\mathbf{h}^{\prime}\right)^{2}-\frac{\omega^{2}}{c^{2}}\left(\mathbf{f}^{\prime}\right)^{2} \tag{64}
\end{equation*}
$$

Integrating over space:

$$
\begin{equation*}
\int\left(\mathbf{h}^{\prime}\right)^{2}=\frac{\omega^{2}}{c^{2}} \int\left(\mathbf{f}^{\prime}\right)^{2} \tag{65}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\int\left(\mathbf{h}^{\prime \prime}\right)^{2}=\frac{\omega^{2}}{c^{2}} \int\left(\mathbf{f}^{\prime \prime}\right)^{2} \tag{66}
\end{equation*}
$$

Field energy

Comparing the energies
Let us examine is $\int \mathbf{h}^{\prime} \cdot \mathbf{h}^{\prime \prime}$. With

$$
\begin{equation*}
\nabla \cdot\left[\mathbf{f}^{\prime} \times\left(\nabla \times \mathbf{f}^{\prime \prime}\right)\right]=(\nabla \times \mathbf{f}) \cdot\left(\nabla \times \mathbf{f}^{\prime \prime}\right)-\mathbf{f}^{\prime} \cdot\left(\nabla \times \nabla \times \mathbf{f}^{\prime \prime}\right) \tag{67}
\end{equation*}
$$

we get

$$
\begin{equation*}
\int \mathbf{h}^{\prime} \cdot \mathbf{h}^{\prime \prime}=\frac{\omega^{2}}{c^{2}} \int \mathbf{f}^{\prime} \cdot \mathbf{f}^{\prime \prime} \tag{68}
\end{equation*}
$$

Hence

$$
\begin{equation*}
H_{b}=2 \omega^{2} \epsilon_{0}\left[x^{2} \int\left(\mathbf{f}^{\prime}\right)^{2}+p^{2} \int\left(\mathbf{f}^{\prime \prime}\right)^{2}-2 x p \int \mathbf{f}^{\prime} \cdot \mathbf{f}^{\prime \prime}\right] \tag{69}
\end{equation*}
$$

Using

$$
\begin{equation*}
\int\left(\mathbf{f}^{\prime}\right)^{2}+\int\left(\mathbf{f}^{\prime \prime}\right)^{2}=\mathcal{V} \tag{70}
\end{equation*}
$$

we get finally

$$
\begin{equation*}
H=2 \omega^{2} \epsilon_{0} \mathcal{V}\left[x^{2}+p^{2}\right] \tag{71}
\end{equation*}
$$

Field energy

Total field energy

The total energy of the radiation field is thus:

$$
\begin{equation*}
H=\sum_{\ell} H_{\ell}=\sum_{\ell} 2 \omega_{\ell}^{2} \epsilon_{0} \mathcal{V}\left[x_{\ell}^{2}+p_{\ell}^{2}\right] \tag{72}
\end{equation*}
$$

A collection of independent harmonic oscillators.

Field energy

Canonical variables

- Need canonically conjugate variables for quantization: x_{c} and p_{c} such that

$$
\begin{equation*}
\frac{d x_{c}}{d t}=\frac{\partial H}{\partial p_{c}} \quad \text { and } \quad \frac{d p_{c}}{d t}=-\frac{\partial H}{\partial x_{c}} \tag{73}
\end{equation*}
$$

- x and p are not canonical, since

$$
\begin{equation*}
\frac{d x}{d t}=\omega p \neq \frac{\partial H}{\partial p}=4 \omega^{2} \epsilon_{0} \mathcal{V} p \tag{74}
\end{equation*}
$$

- Canonical amplitude

$$
\begin{equation*}
\alpha(t)=2 \sqrt{\epsilon_{0} \omega \mathcal{V}} \mathcal{A}(t) \tag{75}
\end{equation*}
$$

- Canonical position and momentum:

$$
\begin{equation*}
\alpha(t)=x_{c}+i p_{c} \tag{76}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
x_{c}=2 \sqrt{\epsilon_{0} \omega \mathcal{V}} x \quad \text { and } \quad p_{c}=2 \sqrt{\epsilon_{0} \omega \mathcal{V}} p \tag{77}
\end{equation*}
$$

Field energy

Canonical variables

Mode energy

$$
\begin{equation*}
H=\frac{\omega}{2}\left[x_{c}^{2}+p_{c}^{2}\right] \tag{78}
\end{equation*}
$$

and obviously

$$
\begin{equation*}
\frac{d x_{c}}{d t}=\frac{\partial H}{\partial p_{c}} \quad \text { and } \quad \frac{d p_{c}}{d t}=-\frac{\partial H}{\partial x_{c}} \tag{79}
\end{equation*}
$$

Proper canonical variables. Note that the x_{c} and p_{c} coordinates are not dimensionless (their joint dimension is the square root of an action)

Field momentum

Total momentum

Density of momentum proportional to the Poynting vector

$$
\begin{equation*}
\mathbf{g}=\frac{\boldsymbol{\Pi}}{c^{2}} \quad \text { with } \quad \boldsymbol{\Pi}=\frac{\mathbf{E} \times \mathbf{B}}{\mu_{0}} \tag{80}
\end{equation*}
$$

The plane wave mode basis is most convenient to describe the momentum

$$
\begin{equation*}
\mathbf{E}^{+}(\mathbf{r}, t)=\sum_{\ell} \mathbf{E}_{\ell}^{+}=\sum_{\ell} i \omega_{\ell} \mathcal{A}_{\ell}(t) \boldsymbol{\epsilon}_{\ell} e^{i \mathbf{k}_{\ell} \cdot \mathbf{r}} \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{B}^{+}(\mathbf{r}, t)=\sum_{\ell} \mathbf{B}_{\ell}^{+}=\sum_{\ell} \mathcal{A}_{\ell}(t)\left(i \mathbf{k}_{\ell} \times \boldsymbol{\epsilon}_{\ell}\right) e^{i \mathbf{k}_{\ell} \cdot \mathbf{r}} \tag{82}
\end{equation*}
$$

Field momentum

Total momentum
Using orthogonalities of modes and polarizations

$$
\begin{equation*}
\mathbf{P}=\sum_{\ell} \mathbf{P}_{\ell} \tag{83}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{P}_{\ell}=\epsilon_{0} \int\left(\mathbf{E}_{\ell}^{+}+\mathbf{E}_{\ell}^{-}\right) \times\left(\mathbf{B}_{\ell}^{+}+\mathbf{B}_{\ell}^{-}\right) \tag{84}
\end{equation*}
$$

and after a painful calculation

$$
\begin{equation*}
\mathbf{P}_{\ell}=2 \epsilon_{0} \mathcal{V} \omega_{\ell}\left|\mathcal{A}_{\ell}\right|^{2} \boldsymbol{\epsilon}_{\ell} \times\left(\mathbf{k}_{\ell} \times \boldsymbol{\epsilon}_{\ell}\right) \tag{85}
\end{equation*}
$$

or, finally

$$
\begin{equation*}
\mathbf{P}=\frac{1}{2} \sum_{\ell}\left|\alpha_{\ell}\right|^{2} \mathbf{k}_{\ell} \tag{86}
\end{equation*}
$$

with a clear interpretation.

Field momentum

Angular momentum
Angular momentum density $\mathbf{r} \times \mathbf{g}$ and hence

$$
\begin{equation*}
\mathbf{J}=\epsilon_{0} \int \mathbf{r} \times(\mathbf{E} \times \mathbf{B}) d^{3} \mathbf{r} \tag{87}
\end{equation*}
$$

A difficult calculation leads to

$$
\begin{equation*}
\mathbf{J}=\mathbf{L}+\mathbf{S} \tag{88}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{S}=\epsilon_{0} \int \mathbf{E} \times \mathbf{A} d^{3} \mathbf{r} \tag{89}
\end{equation*}
$$

is the field's 'intrinsic angular momentum' and

$$
\begin{equation*}
\mathbf{L}=\epsilon_{0} \int d^{3} \mathbf{r} \sum_{j} E_{j}(\mathbf{r} \cdot \nabla) A_{j}, \quad j=(x, y, z) \tag{90}
\end{equation*}
$$

is the field's 'orbital angular momentum'.

Field momentum

Spin angular momentum

Plane wave basis with circular polarizations

$$
\begin{equation*}
\mathbf{S}=i \epsilon_{0} \mathcal{V} \sum_{n} \omega_{n}\left[\mathcal{A}_{n+} \mathcal{A}_{n+}^{*}\left(\boldsymbol{\epsilon}_{+} \times \boldsymbol{\epsilon}_{+}^{*}\right)+\mathcal{A}_{n-} \mathcal{A}_{n-}^{*}\left(\boldsymbol{\epsilon}_{-} \times \boldsymbol{\epsilon}_{-}^{*}\right)-\text { c.c. }\right] \tag{91}
\end{equation*}
$$

Using $\epsilon_{+} \times \epsilon_{+}^{*}=\epsilon_{+} \times \epsilon_{-}=-i \mathbf{u}_{\mathbf{k}}$ and $\epsilon_{-} \times \epsilon_{-}^{*}=i \mathbf{u}_{\mathbf{k}}$

$$
\begin{equation*}
\mathbf{S}=\frac{1}{2} \sum_{n}\left[\left|\alpha_{n+}\right|^{2}-\left|\alpha_{n-}\right|^{2}\right] \mathbf{u}_{\mathbf{k}} \tag{92}
\end{equation*}
$$

with an equally simple interpretation.

Field quantization

The field is a collection of independent harmonic oscillators. Let us quantify all of them independently, using the Dirac approach. The conjugate classical variables x_{c} and p_{c} should be replaced by two operators X and P (position and momentum operators, dimension also the square root of an action) acting in an infinite dimension Hilbert space, with the commutation rule:

$$
\begin{equation*}
[X, P]=i \hbar \tag{93}
\end{equation*}
$$

Field quantization

Annihilation and creation operators

$$
\begin{equation*}
a=\frac{1}{\sqrt{2 \hbar}}(X+i P) \tag{94}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{\dagger}=\frac{1}{\sqrt{2 \hbar}}(X-i P) \tag{95}
\end{equation*}
$$

with

$$
\begin{equation*}
\left[a, a^{\dagger}\right]=\mathbb{1} \tag{96}
\end{equation*}
$$

Or

$$
\begin{equation*}
X=\sqrt{\frac{\hbar}{2}}\left(a+a^{\dagger}\right) \tag{97}
\end{equation*}
$$

and

$$
\begin{equation*}
P=i \sqrt{\frac{\hbar}{2}}\left(a^{\dagger}-a\right) \tag{98}
\end{equation*}
$$

Field quantization

Field quadratures

Define reduced units

$$
\begin{equation*}
X_{0}=\frac{X}{\sqrt{2 \hbar}} \quad \text { and } \quad P_{0}=\frac{P}{\sqrt{2 \hbar}} \tag{99}
\end{equation*}
$$

With these definitions

$$
\begin{gather*}
{\left[X_{0}, P_{0}\right]=\frac{i}{2}} \\
a^{\dagger}=X_{0}-i P_{0}, \quad X_{0}=\frac{a+a^{\dagger}}{2}, \quad P_{0}=i \frac{a^{\dagger}-a}{2} \tag{101}
\end{gather*}
$$

Field quantization

Hamiltonian

$$
\begin{equation*}
H=\frac{\omega}{2}\left(X^{2}+P^{2}\right)=\hbar \omega\left(X_{0}^{2}+P_{0}^{2}\right) \tag{102}
\end{equation*}
$$

or

$$
\begin{equation*}
H=\frac{\hbar \omega}{4}\left[\left(a+a^{\dagger}\right)^{2}-\left(a^{\dagger}-a\right)^{2}\right] \tag{103}
\end{equation*}
$$

and, in the 'normal order',

$$
\begin{equation*}
H=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right) \tag{104}
\end{equation*}
$$

whose diagonaization is described in all textbooks.

Field quantization

Number operator

$$
\begin{equation*}
N=a^{\dagger} a \tag{105}
\end{equation*}
$$

Commutation relations:

$$
\begin{equation*}
[N, a]=-a \quad \text { and } \quad\left[N, a^{\dagger}\right]=a^{\dagger} \tag{106}
\end{equation*}
$$

Eingenvalues: all positive integers, with nondegenerate eignestates

$$
\begin{equation*}
N|n\rangle=n|n\rangle, \tag{107}
\end{equation*}
$$

Hence, the eigenergies are

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \tag{108}
\end{equation*}
$$

Ground state: 'vacuum', $|0\rangle$, energy $\hbar \omega / 2$

Field quantization

Fock states

$|n\rangle$ are the 'photon number states' with the orthogonality relation

$$
\begin{equation*}
\langle n \mid p\rangle=\delta_{n, p} \tag{109}
\end{equation*}
$$

Annihilation and creation of photons with:

$$
\begin{equation*}
a|n\rangle=\sqrt{n}|n-1\rangle \tag{110}
\end{equation*}
$$

with

$$
\begin{equation*}
a|0\rangle=0 \tag{111}
\end{equation*}
$$

and, similarly

$$
\begin{equation*}
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \tag{112}
\end{equation*}
$$

Hence

$$
\begin{equation*}
|n\rangle=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle \tag{113}
\end{equation*}
$$

Field quantization

All modes

$$
\begin{equation*}
H\left|n_{1}, \ldots, n_{\ell} \ldots\right\rangle=E_{n}\left|n_{1}, \ldots, n_{\ell} \ldots\right\rangle \tag{114}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{n}=\sum_{\ell}\left(n_{\ell} \hbar \omega_{\ell}+\frac{\hbar \omega_{\ell}}{2}\right) \tag{115}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{\ell} \ldots\right\rangle=\prod_{\ell} \frac{\left(a_{\ell}^{\dagger}\right)^{n_{\ell}}}{\sqrt{n_{\ell}!}}|0\rangle \tag{116}
\end{equation*}
$$

Note that the vacuum state has an infinite energy (more on that later).

Field quantization

Vector potential operator
Classical normal variables:

$$
\begin{equation*}
\mathcal{A}=\frac{1}{2 \sqrt{\epsilon_{0} \omega \mathcal{V}}}\left(x_{c}+i p_{c}\right) \tag{117}
\end{equation*}
$$

Corresponding quantum operators

$$
\begin{equation*}
A_{\ell}=\frac{1}{2 \sqrt{\epsilon_{0} \omega_{\ell} \mathcal{V}}}\left(X_{\ell}+i P_{\ell}\right)=\sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\ell} \mathcal{V}}} a_{\ell} \tag{118}
\end{equation*}
$$

Positive frequency vector potential

$$
\begin{equation*}
\mathbf{A}^{+}(\mathbf{r})=\sum_{\ell} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\ell} \mathcal{V}}} a_{\ell} \mathbf{f}_{\ell}(\mathbf{r}) \tag{119}
\end{equation*}
$$

Hermitian vector potential:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\sum_{\ell} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\ell} \mathcal{V}}}\left(a_{\ell} \mathbf{f}_{\ell}(\mathbf{r})+a_{\ell}^{\dagger} \mathbf{f}_{\ell}^{*}(\mathbf{r})\right) \tag{120}
\end{equation*}
$$

Field quantization

Electric field operator

The hermitian electric field is similarly:

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=i \sum_{\ell} \mathcal{E}_{\ell}\left(a_{\ell} \mathbf{f}_{\ell}(\mathbf{r})-a_{\ell}^{\dagger} \mathbf{f}_{\ell}^{*}(\mathbf{r})\right) \tag{121}
\end{equation*}
$$

where we define the 'field per photon in mode ℓ ' by

$$
\begin{equation*}
\mathcal{E}_{\ell}=\sqrt{\frac{\hbar \omega_{\ell}}{2 \epsilon_{0} \mathcal{V}}} \tag{122}
\end{equation*}
$$

Field quantization

Magnetic field operator

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\sum_{\ell} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\ell} \mathcal{V}}}\left(a_{\ell} \mathbf{h}_{\ell}(\mathbf{r})+a_{\ell}^{\dagger} \mathbf{h}_{\ell}^{*}(\mathbf{r})\right) \tag{123}
\end{equation*}
$$

with $\mathbf{h}_{\ell}=\boldsymbol{\nabla} \times \mathbf{f}_{\ell}$

Field quantization

Plane wave mode basis

$$
\begin{align*}
\mathbf{A}^{+}(\mathbf{r}) & =\sum_{\ell} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\ell} \mathcal{V}}} a_{\ell} \boldsymbol{\epsilon}_{\ell} e^{i \mathbf{k}_{\ell} \cdot \mathbf{r}} \tag{124}\\
\mathbf{E}^{+}(\mathbf{r}) & =i \sum_{\ell} \mathcal{E}_{\ell} a_{\ell} \epsilon_{\ell} e^{i \mathbf{k}_{\ell} \cdot \mathbf{r}} \tag{125}\\
\mathbf{B}^{+}(\mathbf{r}) & =\sum_{\ell} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\ell} \mathcal{V}}} a_{\ell}\left(i \mathbf{k}_{\ell} \times \boldsymbol{\epsilon}_{\ell}\right) e^{i \mathbf{k}_{\ell} \cdot \mathbf{r}} \tag{126}
\end{align*}
$$

Field quantization

Heisenberg picture

Evolution of annihilation operator

$$
\begin{equation*}
i \hbar \frac{d a_{H}}{d t}=\left[a_{H}, H\right] \quad \text { i.e. } \quad \frac{d a_{H}}{d t}=-i \omega a_{H} \tag{127}
\end{equation*}
$$

whose immediate solution is

$$
\begin{equation*}
a_{H}(t)=a_{H}(0) e^{-i \omega t}=a e^{-i \omega t} \tag{128}
\end{equation*}
$$

Field quantization

Momentum, angular momentum

- Total momentum by replacing $\left|\alpha_{\ell}\right|^{2}$ in the classical expression by $\alpha_{\ell}^{*} \alpha_{\ell}$ and α_{ℓ} by $a_{\ell} \sqrt{2 \hbar}$

$$
\begin{equation*}
\mathbf{P}=\sum_{\ell} \hbar \mathbf{k}_{l} a_{\ell}^{\dagger} a_{\ell} \tag{129}
\end{equation*}
$$

- Similarly

$$
\begin{equation*}
\mathbf{S}=\sum_{n} \hbar \mathbf{u}_{\mathbf{k}_{n}}\left[N_{n+}-N_{n-}\right] \tag{130}
\end{equation*}
$$

Field quantization

Field quadratures
Eigenstates of the quadratures:

$$
\begin{equation*}
X_{0}|x\rangle=x|x\rangle \quad \text { and } \quad P_{0}|p\rangle=p|p\rangle \tag{131}
\end{equation*}
$$

Wavefunctions:

$$
\begin{equation*}
\Psi(x)=\langle x \mid \Psi\rangle \tag{132}
\end{equation*}
$$

For the vacuum:

$$
\begin{equation*}
\Psi_{0}(x)=\left(\frac{2}{\pi}\right)^{1 / 4} e^{-x^{2}} \tag{133}
\end{equation*}
$$

Also in the $|p\rangle$ representation:

$$
\begin{equation*}
\widetilde{\Psi}_{0}(p)=\left(\frac{2}{\pi}\right)^{1 / 4} e^{-p^{2}} \tag{134}
\end{equation*}
$$

Suggests a pictorial representation of the vacuum as a small circle in phase plane.

Field quantization

Field quadratures

For the Fock state $|n\rangle$:

$$
\begin{equation*}
\Psi_{n}(x)=\left(\frac{2}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} e^{-x^{2}} H_{n}(x \sqrt{2}) \tag{135}
\end{equation*}
$$

where H_{n} is the nth Hermite polynomial defined by

$$
\begin{equation*}
H_{n}(u)=(-1)^{n} e^{u^{2}} \frac{d^{n}}{d u^{n}} e^{-u^{2}} \tag{136}
\end{equation*}
$$

These wavefunctions have n nodes and a a parity $(-1)^{n}$

Field quantization

Field quadratures
General field quadratures

$$
\begin{equation*}
X_{\phi}=\frac{a e^{-i \phi}+a^{\dagger} e^{i \phi}}{2} \tag{137}
\end{equation*}
$$

Commutation:

$$
\begin{equation*}
\left[X_{\phi}, X_{\phi+\pi / 2}\right]=\frac{i}{2} \tag{138}
\end{equation*}
$$

Heisenberg relations

$$
\begin{equation*}
\Delta X_{\phi} \Delta X_{\phi+\pi / 2} \geq \frac{1}{4} \tag{139}
\end{equation*}
$$

Eigenstates $X_{\phi}\left|x_{\phi}\right\rangle=x_{\phi}\left|x_{\phi}\right\rangle$ with

$$
\begin{equation*}
\left|x_{\phi+\pi / 2}\right\rangle=\frac{1}{\sqrt{\pi}} \int d y_{\phi} e^{2 i x_{\phi+\pi / 2} y_{\phi}}\left|y_{\phi}\right\rangle \tag{140}
\end{equation*}
$$

Field quantization

Mode basis change
From basis \mathbf{f}_{ℓ} to \mathbf{g}_{p}, with

$$
\begin{equation*}
\mathbf{f}_{\ell}=\sum_{p} U_{\ell p} \mathbf{g}_{p} \tag{141}
\end{equation*}
$$

where $U_{\ell p}$ is a unitary matrix that connects modes with identical frequencies.
The positive frequency part of the electric field can be written as:

$$
\begin{align*}
\mathbf{E}^{+} & =i \sum_{\ell} \mathcal{E}_{\ell} \mathbf{f}_{\ell}(\mathbf{r}) a_{\ell} \\
& =i \sum_{\ell, p} \mathcal{E}_{\ell} U_{\ell p} a_{\ell} \mathbf{g}_{p}(\mathbf{r}) \\
& =\sum_{p} \mathcal{E}_{p} \mathbf{g}_{p}(\mathbf{r}) b_{p} \tag{142}
\end{align*}
$$

Field quantization

Mode basis change

Defines the new annihilation operators

$$
\begin{equation*}
b_{p}=\sum_{\ell} U_{\ell p} a_{\ell} \tag{143}
\end{equation*}
$$

and using unitarity $U_{\ell p}^{*}=U_{p \ell}^{\dagger}$

$$
\begin{equation*}
b_{p}^{\dagger}=\sum_{\ell} U_{p l}^{\dagger} a_{\ell}^{\dagger} \tag{144}
\end{equation*}
$$

Field quantization

Mode basis change

Exercise: check new bosonic commutation rules

$$
\begin{align*}
{\left[b_{p}, b_{q}^{\dagger}\right] } & =\sum_{\ell, m} U_{\ell p} a_{\ell} U_{q m}^{\dagger} a_{m}^{\dagger}-U_{q m}^{\dagger} a_{m}^{\dagger} U_{\ell p} a_{\ell} \\
& =\sum_{\ell, m} U_{\ell p} U_{q m}^{\dagger}\left[a_{\ell}, a_{m}^{\dagger}\right] \\
& =\sum_{\ell} U_{q \ell}^{\dagger} U_{\ell p} \\
& =\delta_{p, q} \tag{145}
\end{align*}
$$

Fock states

A basis of the Hilbert space

$$
\begin{equation*}
|\Psi\rangle=\sum_{n} c_{n}|n\rangle \tag{146}
\end{equation*}
$$

Photon number distribution

$$
\begin{equation*}
p_{n}=\left|c_{n}\right|^{2} \tag{147}
\end{equation*}
$$

Mean number of photons

$$
\begin{equation*}
\bar{n}=\sum_{n} n p_{n} \tag{148}
\end{equation*}
$$

Photon number variance

$$
\begin{align*}
\Delta N^{2} & =\left\langle N^{2}\right\rangle-\langle N\rangle^{2} \\
& =\sum_{n}(n-\bar{n})^{2} p_{n} \tag{149}
\end{align*}
$$

Fock states

Statistical mixtures

$$
\begin{equation*}
\rho=\sum_{n, p} \rho_{n p}|n\rangle\langle p| \tag{150}
\end{equation*}
$$

Photon number distribution

$$
\begin{equation*}
\rho_{n n}=p_{n} \tag{151}
\end{equation*}
$$

Note that Fock states are not invariant in a mode basis change

$$
\begin{equation*}
\left|n_{p}\right\rangle=\frac{\left(b_{p}^{\dagger}\right)^{n_{p}}}{\sqrt{n!}}|0\rangle=\frac{\left(\sum_{\ell} U_{p \ell}^{\dagger} a_{\ell}^{\dagger}\right)^{n_{p}}}{\sqrt{n!}}|0\rangle \tag{152}
\end{equation*}
$$

Fock states

Non classicality of Fock states

Fock states are very non-classical

- A large energy
- Zero average fields and potentials since $\langle n| a|n\rangle=0$

Can we find more intuitive field states? Yes: Coherent states.

Coherent states

Displacement operator

A unitary defined by:

$$
\begin{equation*}
D(\alpha)=e^{\alpha a^{\dagger}-\alpha^{*} a} \tag{153}
\end{equation*}
$$

where α is an arbitrary complex amplitude

$$
\begin{gather*}
\alpha=\alpha^{\prime}+i \alpha^{\prime \prime} \tag{154}\\
D(\alpha)^{\dagger} D(\alpha)=\mathbb{1} \tag{155}
\end{gather*}
$$

and

$$
\begin{equation*}
D(\alpha)^{\dagger}=D(-\alpha) \tag{156}
\end{equation*}
$$

Coherent states

Displacement operator
An equivalent expression

$$
\begin{equation*}
D(\alpha)=e^{2 i \alpha^{\prime \prime} X_{0}-2 i \alpha^{\prime} P_{0}} \tag{157}
\end{equation*}
$$

Using the Glauber relation

$$
\begin{equation*}
e^{A} e^{B}=e^{A+B} e^{[A, B] / 2} \tag{158}
\end{equation*}
$$

valid when

$$
\begin{gather*}
{[A,[A, B]]=[B,[A, B]]=0} \tag{159}\\
D(\alpha)=e^{-i \alpha^{\prime} \alpha^{\prime \prime}} e^{2 i \alpha^{\prime \prime} X_{0}} e^{-2 i \alpha^{\prime} P_{0}} \tag{160}
\end{gather*}
$$

a product of displacement operators:

$$
\begin{align*}
e^{-2 i \alpha^{\prime} P_{0}}|x\rangle & =\left|x+\alpha^{\prime}\right\rangle \tag{161}\\
e^{2 i \alpha^{\prime \prime} X_{0}}|p\rangle & =\left|p+\alpha^{\prime \prime}\right\rangle \tag{162}
\end{align*}
$$

Coherent states

Combination of displacements

Using Glauber

$$
\begin{equation*}
D(\alpha) D(\beta)=e^{\left(\alpha \beta^{*}-\alpha^{*} \beta\right) / 2} D(\alpha+\beta) \tag{163}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\Phi=\left(\alpha \beta^{*}-\alpha^{*} \beta\right) / 2 i=\frac{\alpha^{\prime \prime} \beta^{\prime}-\alpha^{\prime} \beta^{\prime \prime}}{2} \tag{164}
\end{equation*}
$$

surface of the triangle with sides α and β.

Coherent states

Displacement of annihilation

Compute $D(-\alpha) a D(\alpha)$. Use Baker-Hausdorff lemma

$$
\begin{equation*}
e^{A} a e^{-A}=a+[A, a]+\frac{1}{2!}[A,[A, a]]+\ldots \tag{165}
\end{equation*}
$$

for $A=-\alpha a^{\dagger}+\alpha^{*} a$, with $[A, a]=\alpha$. Hence

$$
\begin{equation*}
D(-\alpha) a D(\alpha)=a+\alpha \mathbb{1} \tag{166}
\end{equation*}
$$

Coherent states

Definition

The coherent states are defined as

$$
\begin{equation*}
|\alpha\rangle=D(\alpha)|0\rangle . \tag{167}
\end{equation*}
$$

Note that $|0\rangle$ is a coherent state. Coherent states in general are the vacuum displaced by the complex amplitude α.
Wavefunction of a coherent state in the X_{0} representation:

$$
\begin{equation*}
\Psi_{\alpha}(x) \propto e^{-\left(x-\alpha^{\prime}\right)^{2}} \tag{168}
\end{equation*}
$$

and in the P_{0} representation:

$$
\begin{equation*}
\widetilde{\Psi}_{\alpha}(p) \propto e^{-\left(p-\alpha^{\prime \prime}\right)^{2}} \tag{169}
\end{equation*}
$$

Coherent states

Properties

- Right-eigenstates of the annihilation operator

$$
\begin{equation*}
a|\alpha\rangle=a D(\alpha)|0\rangle=D(\alpha) D(-\alpha) a D(\alpha)|0\rangle=(a+\alpha \mathbb{1})|0\rangle=\alpha|\alpha\rangle \tag{170}
\end{equation*}
$$

since $a|0\rangle=0$. Hence

$$
\begin{equation*}
\langle\alpha| a|\alpha\rangle=\alpha \quad \text { and } \quad\langle\alpha| a^{\dagger}|\alpha\rangle=\alpha^{*} \tag{171}
\end{equation*}
$$

- Field operators have nonzero eigenvalues in the coherent states:

$$
\begin{align*}
\langle\mathbf{E}\rangle & =i \mathcal{E}\left(\mathbf{f}(\mathbf{r}) \alpha-\mathbf{f}^{*}(\mathbf{r}) \alpha^{*}\right) \tag{172}\\
\langle\mathbf{A}\rangle & =\frac{\mathcal{E}}{\omega}\left(\mathbf{f}(\mathbf{r}) \alpha+\mathbf{f}^{*}(\mathbf{r}) \alpha^{*}\right) \tag{173}
\end{align*}
$$

Coherent states

Properties

- Average photon number

$$
\begin{equation*}
\bar{n}=\langle\alpha| a^{\dagger} a|\alpha\rangle=|\alpha|^{2} \tag{174}
\end{equation*}
$$

- Photon number variance. Using $N^{2}=a^{\dagger} a a^{\dagger} a=\left(a^{\dagger}\right)^{2} a^{2}+a^{\dagger} a$

$$
\begin{equation*}
\left\langle N^{2}\right\rangle=|\alpha|^{4}+|\alpha|^{2} \tag{175}
\end{equation*}
$$

and

$$
\begin{gather*}
\Delta N^{2}=|\alpha|^{2}=\bar{n} \tag{176}\\
\frac{\Delta N}{\bar{n}}=\frac{1}{\sqrt{\bar{n}}} \tag{177}
\end{gather*}
$$

Coherent states

Properties

- Expansion on the Fock state basis

$$
\begin{equation*}
D(\alpha)=e^{-|\alpha|^{2} / 2} e^{\alpha a^{\dagger}} e^{-\alpha^{*} a} \tag{178}
\end{equation*}
$$

with $a|0\rangle=0$:

$$
\begin{equation*}
|\alpha\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha a^{\dagger}}|0\rangle \tag{179}
\end{equation*}
$$

Expand exponential:

$$
\begin{equation*}
|\alpha\rangle=\sum_{n} c_{n}|n\rangle \tag{180}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{n}=e^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}} \tag{181}
\end{equation*}
$$

Coherent states

Properties

- Photon number distribution

$$
\begin{equation*}
p_{n}=e^{-|\alpha|^{2}} \frac{|\alpha|^{2 n}}{n!}=e^{-\bar{n}} \frac{\bar{n}^{n}}{n!} \tag{182}
\end{equation*}
$$

For large average photon numbers

$$
\begin{equation*}
p_{n} \propto e^{-(n-\bar{n})^{2} / \bar{n}} \tag{183}
\end{equation*}
$$

- Scalar product of coherent states

$$
\begin{align*}
\langle\alpha \mid \beta\rangle & =e^{-\left(|\alpha|^{2}+|\beta|^{2}\right) / 2} \sum_{n, p} \frac{\left(\alpha^{*}\right)^{n} \beta^{p}}{\sqrt{n!p!}}\langle n \mid p\rangle \\
& =e^{-\left(|\alpha|^{2}+|\beta|^{2}\right) / 2} e^{\alpha^{*} \beta} \tag{184}
\end{align*}
$$

Square modulus

$$
\begin{equation*}
|\langle\alpha \mid \beta\rangle|^{2}=e^{-|\alpha-\beta|^{2}} \tag{185}
\end{equation*}
$$

Coherent states

Properties

- Overcomplete basis

$$
\begin{equation*}
\mathbb{1}=\frac{1}{\pi} \int d^{2} \alpha|\alpha\rangle\langle\alpha| \tag{186}
\end{equation*}
$$

Demonstration:

$$
\begin{equation*}
\int d^{2} \alpha|\alpha\rangle\langle\alpha|=\sum_{n, p} \frac{1}{\sqrt{n!p!}}|n\rangle\langle p| \int d^{2} \alpha e^{-|\alpha|^{2}} \alpha^{n}\left(\alpha^{*}\right)^{p} \tag{187}
\end{equation*}
$$

Switch to polar coordinates $\alpha=\rho \exp (i \theta)$

$$
\begin{equation*}
\int \rho d \rho d \theta e^{-\rho^{2}} \rho^{n+p} e^{i \theta(n-p)} \tag{188}
\end{equation*}
$$

Cancels when $n \neq p$.

Coherent states

Properties

- Overcomplete basis

For $n=p$

$$
\begin{equation*}
I_{n}=\pi \int d u u^{n} e^{-u} \tag{189}
\end{equation*}
$$

with $u=\rho^{2}$. Integration per parts leads to $I_{n}=n I_{n-1}$ and $I_{n}=\pi n$!. Hence

$$
\begin{equation*}
\int d^{2} \alpha|\alpha\rangle\langle\alpha|=\pi \sum_{n}|n\rangle\langle n| \tag{190}
\end{equation*}
$$

Coherent states

Properties

- Overcomplete basis Expansion is not uniquely defined:

$$
\begin{equation*}
|0\rangle=\frac{1}{\pi} \int d^{2} \alpha e^{-|\alpha|^{2} / 2}|\alpha\rangle \tag{191}
\end{equation*}
$$

and

$$
\begin{equation*}
|n\rangle=\frac{1}{\pi \sqrt{n!}} \int d^{2} \alpha e^{-|\alpha|^{2} / 2}\left(\alpha^{*}\right)^{n}|\alpha\rangle \tag{192}
\end{equation*}
$$

Coherent states

Properties

- Evolution

$$
\begin{align*}
& |\Psi(0)\rangle=|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{193}\\
& |\Psi(t)\rangle=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}} e^{-i n \omega t} e^{-i \omega t / 2}|n\rangle \\
& =e^{-i \omega t / 2}\left|\alpha e^{-i \omega t}\right\rangle \tag{194}
\end{align*}
$$

Evolution of the amplitude is the same as in classical physics

$$
\begin{equation*}
\alpha(t)=\alpha(0) e^{-i \omega t} \tag{195}
\end{equation*}
$$

Phase space representations

Seeks an analogue of the classical phase space distributions $f(x, p)$ of statistical physics allowing us to compute any average by

$$
\begin{equation*}
\bar{o}=\int f(x, p) o(x, p) d x d p \tag{196}
\end{equation*}
$$

Transpose that to a field statistical mixture defined by the density operator ρ.

Phase space representations

Characteristic functions

Three operators ordering:

- Normal: a on right. e.g. number operator $a^{\dagger} a$
- Symmetric e.g. $\left(a a^{\dagger}+a^{\dagger} a\right)$
- Anti-Normal e.g. $a^{\dagger}{ }^{\dagger}$

Any operator expression can be put in one of these forms by proper commutations of creation and annihilation operators.
Leads to three characteristic functions characterizing ρ

Phase space representations

Symmetric characteristic function

- Symmetric characteristic function

$$
\begin{equation*}
C_{s}^{[\rho]}(\lambda)=\langle D(\lambda)\rangle=\operatorname{Tr}\left[\rho e^{\lambda a^{\dagger}-\lambda^{*} a}\right] \tag{197}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{s}^{[\rho]}(0)=\operatorname{Tr}(\rho)=1 \tag{198}
\end{equation*}
$$

D being unitary, all its eigenvalues have a unit modulus. Hence

$$
\begin{equation*}
\left|C_{s}^{[\rho]}(\lambda)\right| \leq 1 \tag{199}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{s}^{[\rho]}(-\lambda)=\left[C_{s}^{[\rho]}(\lambda)\right]^{*} \tag{200}
\end{equation*}
$$

For a pure state

$$
\begin{equation*}
C_{s}^{[|\Psi\rangle\langle\Psi|]}=\langle\Psi| D(\lambda)|\Psi\rangle \tag{201}
\end{equation*}
$$

Phase space representations

Normal and anti-normal characteristic functions

- Normal characteristic function

$$
\begin{equation*}
C_{n}^{[\rho]}(\lambda)=\operatorname{Tr}\left[\rho e^{\lambda a^{\dagger}} e^{-\lambda^{*} a}\right] \tag{202}
\end{equation*}
$$

- Anti-normal characteristic function

$$
\begin{equation*}
C_{a n}^{[\rho]}(\lambda)=\operatorname{Tr}\left[\rho e^{-\lambda^{*} a} e^{\lambda a^{\dagger}}\right] \tag{203}
\end{equation*}
$$

- Relations

$$
\begin{equation*}
C_{n}^{[\rho]}(\lambda)=e^{|\lambda|^{2} / 2} C_{s}^{[\rho]}(\lambda) \quad C_{a n}^{[\rho]}(\lambda)=e^{-|\lambda|^{2} / 2} C_{s}^{[\rho]}(\lambda) \tag{204}
\end{equation*}
$$

Phase space representations

The Husimi- Q representation

Definition:

$$
\begin{equation*}
Q^{[\rho]}(\alpha)=\frac{1}{\pi^{2}} \int d^{2} \lambda e^{\left(\alpha \lambda^{*}-\alpha^{*} \lambda\right)} C_{a n}^{[\rho]}(\lambda) \tag{205}
\end{equation*}
$$

After some algebra:

$$
\begin{equation*}
Q^{[\rho]}(\alpha)=\frac{1}{\pi} \operatorname{Tr}[\rho|\alpha\rangle\langle\alpha|]=\frac{1}{\pi}\langle\alpha| \rho|\alpha\rangle=\frac{1}{\pi} \operatorname{Tr}[|0\rangle\langle 0| D(-\alpha) \rho D(\alpha)] \tag{206}
\end{equation*}
$$

The Q distribution is positive, bounded by $1 / \pi$ and normalized $\left(\int d^{2} \alpha Q(\alpha)=1\right)$.

Phase space representations

The Husimi- Q representation

A few states

- Coherent state $|\beta\rangle$

$$
\begin{equation*}
Q^{[|\beta\rangle\langle\beta|]}(\alpha)=\frac{1}{\pi}|\langle\alpha \mid \beta\rangle|^{2}=\frac{1}{\pi} e^{-|\alpha-\beta|^{2}} \tag{207}
\end{equation*}
$$

- Fock state $|n\rangle$

$$
\begin{equation*}
Q^{[|n\rangle\langle n|]}(\alpha)=\frac{1}{\pi} \frac{|\alpha|^{2 n}}{n!} e^{-|\alpha|^{2}} \tag{208}
\end{equation*}
$$

Phase space representations

The Husimi- Q representation

- Cat state

$$
\begin{equation*}
\left|\Psi_{\text {cat }}^{ \pm}\right\rangle=\frac{1}{\sqrt{\mathcal{N}_{ \pm}}}(|\beta\rangle \pm|-\beta\rangle) \tag{209}
\end{equation*}
$$

where:

$$
\begin{equation*}
\mathcal{N}_{ \pm}=2\left(1 \pm e^{-2|\beta|^{2}}\right) \tag{210}
\end{equation*}
$$

$$
\begin{equation*}
Q^{[\mathrm{cat}, \pm]}(\alpha)=\frac{1}{\pi \mathcal{N}_{ \pm}}\left[e^{-|\alpha-\beta|^{2}}+e^{-|\alpha+\beta|^{2}} \pm 2 e^{-\left(|\alpha|^{2}+|\beta|^{2}\right)} \cos \left(2 \beta \alpha^{\prime \prime}\right)\right] \tag{211}
\end{equation*}
$$

Phase space representations

The Husimi- Q representation

(a) Coherent state $|\beta\rangle$, with $\beta=\sqrt{5}$. (b) Five-photon Fock state. (c) Schrödinger cat state, superposition of two coherent fields $| \pm \beta\rangle$, with $\beta=\sqrt{5}$. (d) Statistical mixture of the same coherent components.

Phase space representations

The Wigner function

Definition:

$$
\begin{equation*}
W(\alpha)=\frac{1}{\pi^{2}} \int d^{2} \lambda C_{s}(\lambda) e^{\alpha \lambda^{*}-\alpha^{*} \lambda} \tag{212}
\end{equation*}
$$

After a long derivation (see complete lecture notes)

$$
\begin{equation*}
W(x, p)=\frac{2}{\pi} \operatorname{Tr}[D(-\alpha) \rho D(\alpha) \mathcal{P}] \tag{213}
\end{equation*}
$$

where the unitary parity operator \mathcal{P} is defined by

$$
\begin{equation*}
\mathcal{P}|x\rangle=|-x\rangle ; \quad \mathcal{P}|p\rangle=|-p\rangle \tag{214}
\end{equation*}
$$

Phase space representations

The Wigner function

Properties of parity operator

$$
\begin{equation*}
\mathcal{P}|n\rangle=(-1)^{n}|n\rangle \tag{215}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathcal{P}=e^{i \pi a^{\dagger} a} \tag{216}
\end{equation*}
$$

The modulus of its average is lower than one. Thus

$$
\begin{equation*}
-2 / \pi \leq W(\alpha) \leq 2 / \pi \tag{217}
\end{equation*}
$$

Phase space representations

The Wigner function

Marginals of the Wigner distribution:

$$
\begin{equation*}
P(x)=\langle x| \rho|x\rangle=\int d p W(x, p) \tag{218}
\end{equation*}
$$

and

$$
\begin{equation*}
P(p)=\langle p| \rho|p\rangle=\int d x W(x, p) \tag{219}
\end{equation*}
$$

More generally,

$$
\begin{equation*}
P\left(p_{\phi}\right)=\int d x_{\phi} W\left(x_{\phi}, p_{\phi}\right) \tag{220}
\end{equation*}
$$

with

$$
\begin{equation*}
x_{\phi}=x \cos \phi+p \sin \phi ; \quad p_{\phi}=-x \sin \phi+p \cos \phi \tag{221}
\end{equation*}
$$

Phase space representations

The Wigner function

The average of any operator can be directly obtained from the Wigner function

$$
\begin{equation*}
\langle O\rangle=\int d x d p W(x, p) o_{s}(x, p) \tag{222}
\end{equation*}
$$

where o_{s} is the symmetrized form of the operator O in terms of the field quadratures.

Phase space representations

The Wigner function

A few states

- Coherent state

$$
\begin{equation*}
W^{[|\beta\rangle\langle\beta|]}(\alpha)=\frac{2}{\pi} e^{-2|\beta-\alpha|^{2}} \tag{223}
\end{equation*}
$$

- Thermal field

$$
\begin{equation*}
W^{\left[\rho_{\mathrm{th}}\right]}(\alpha)=\frac{2}{\pi} \frac{1}{2 n_{\mathrm{th}}+1} e^{-2|\alpha|^{2} /\left(2 n_{\mathrm{th}}+1\right)} \tag{224}
\end{equation*}
$$

Phase space representations

The Wigner function

- Squeezed vacuum $S(\xi)|0\rangle$ with

$$
\begin{equation*}
S(\xi)=e^{\left(\xi^{*} a^{2}-\xi a^{\dagger^{2}}\right) / 2} \tag{225}
\end{equation*}
$$

Reduced fluctuations on X_{0}

$$
\begin{equation*}
\Delta X_{0}=\frac{1}{2} e^{-\xi} \tag{226}
\end{equation*}
$$

and

$$
\begin{gather*}
\Delta P_{0}=\frac{1}{2} e^{\xi} \tag{227}\\
W^{[s q, \xi]}(x, p)=\frac{2}{\pi} e^{-2 \exp (2 \xi) x^{2}} e^{-2 \exp (-2 \xi) p^{2}} \tag{228}
\end{gather*}
$$

Phase space representations

The Wigner function

(a) Vacuum state. (b) Coherent state with $\beta=\sqrt{5}$. (c) Thermal field with $n_{\text {th }}=1$ photon on the average. (d) A squeezed vacuum state, with a squeezing parameter $\xi=0.5$.

Phase space representations

The Wigner function

- Fock state

$$
\begin{equation*}
W^{[|n\rangle\langle n|]}(\alpha)=\frac{2}{\pi}(-1)^{n} e^{-2|\alpha|^{2}} \mathcal{L}_{n}\left(4|\alpha|^{2}\right) \tag{229}
\end{equation*}
$$

with

$$
\begin{gather*}
W^{[|n\rangle\langle n|]}(0)=\frac{2}{\pi}(-1)^{n} \tag{230}\\
W^{[|1\rangle\langle 1|]}(\alpha)=-\frac{2}{\pi}\left(1-4|\alpha|^{2}\right) e^{-2|\alpha|^{2}} \tag{231}
\end{gather*}
$$

Phase space representations

The Wigner function

Wigner function of a five-photon Fock state.

Phase space representations

The Wigner function

- Cat state

$$
\begin{align*}
W^{[\text {cat }, \pm]}(\alpha) & =\frac{1}{\pi\left(1 \pm e^{-2|\beta|^{2}}\right)}\left[e^{-2|\alpha-\beta|^{2}}+e^{-2|\alpha+\beta|^{2}}\right. \\
& \left. \pm 2 e^{-2|\alpha|^{2}} \cos \left(4 \alpha^{\prime \prime} \beta\right)\right] \tag{232}
\end{align*}
$$

Phase space representations

The Wigner function

Wigner functions of even (a) and odd (b) 10-photon π-phase cats. The Wigner function provides a clear depiction of the non-classical features of a quantum state.

Beamsplitter

Coupling field modes

A simple model for coupling two modes of the radiation field

Beamsplitter

Classical model

Transformation of the electric field amplitudes

$$
\binom{E_{a}^{\prime}}{E_{b}^{\prime}}=U_{c}\binom{E_{a}}{E_{b}}=\left(\begin{array}{ll}
t(\omega) & r(\omega) \tag{233}\\
r(\omega) & t(\omega)
\end{array}\right)\binom{E_{a}}{E_{b}}
$$

where the unitary U_{c} can also be written in a simple case as

$$
U_{c}(\theta)=\left(\begin{array}{cc}
\cos (\theta / 2) & i \sin (\theta / 2) \tag{234}\\
i \sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right)
$$

Quantum beamsplitter

Hamiltonian model

Model the beamsplitter action as a transient application of the Hamiltonian

$$
\begin{equation*}
H_{a b}(t)=-\hbar \frac{g(t)}{2}\left(a b^{\dagger}+a^{\dagger} b\right) \tag{235}
\end{equation*}
$$

a and b : annihilation operators; $g(t)$ slowly varying real function

Quantum beamsplitter

Heisenberg point of view
Transformation of the annihilation operator:

$$
\begin{equation*}
a^{\prime}=U^{\dagger} a U \tag{236}
\end{equation*}
$$

where

$$
\begin{equation*}
U=e^{-(i / \hbar) \int H_{a b}(t) d t}=e^{-i G \theta / 2} \tag{237}
\end{equation*}
$$

with

$$
\begin{equation*}
G=-\left(a b^{\dagger}+a^{\dagger} b\right) \quad \text { and } \quad \theta=\int g(t) d t \tag{238}
\end{equation*}
$$

Using Baker-Hausdorff

$$
\begin{aligned}
a^{\prime}= & U^{\dagger} a U=e^{i G \theta / 2} a e^{-i G \theta / 2}=a+\frac{i \theta}{2}[G, a] \\
& +\frac{i^{2} \theta^{2}}{2!2^{2}}[G,[G, a]]+\cdots+\frac{i^{n} \theta^{n}}{n!2^{n}}[G,[G,[\cdots,[G, a]]]]+\cdots(239)
\end{aligned}
$$

Quantum beamsplitter

Heisenberg point of view

With $[G, a]=b$ and $[G,[G, a]]=a$, series sum up to

$$
\begin{equation*}
a^{\prime}=U^{\dagger} a U=\cos (\theta / 2) a+i \sin (\theta / 2) b \tag{240}
\end{equation*}
$$

and similarly:

$$
\begin{equation*}
b^{\prime}=U^{\dagger} b U=i \sin (\theta / 2) a+\cos (\theta / 2) b \tag{241}
\end{equation*}
$$

Noting that $U^{\dagger}(\theta)=U(-\theta)$
$U a^{\dagger} U^{\dagger}=\cos (\theta / 2) a^{\dagger}+i \sin (\theta / 2) b^{\dagger} ; \quad U b^{\dagger} U^{\dagger}=i \sin (\theta / 2) a^{\dagger}+\cos (\theta / 2) b^{\dagger}$

Quantum beamsplitter

State transformations

Transformation of some simple states:

- No photon: $|\Psi\rangle=|0,0\rangle$. This state is obviously invariant
- One photon in mode a

$$
\begin{equation*}
U|1,0\rangle=U a^{\dagger}|0,0\rangle=U a^{\dagger} U^{\dagger} U|0,0\rangle=U a^{\dagger} U^{\dagger}|0,0\rangle \tag{243}
\end{equation*}
$$

and, using the Heisenberg point of view results in:

$$
\begin{align*}
U|1,0\rangle & =\left[\cos (\theta / 2) a^{\dagger}+i \sin (\theta / 2) b^{\dagger}\right]|0,0\rangle \\
& =\cos (\theta / 2)|1,0\rangle+i \sin (\theta / 2)|0,1\rangle \tag{244}
\end{align*}
$$

- One photon in mode b

$$
\begin{align*}
U|0,1\rangle & =\left[i \sin (\theta / 2) a^{\dagger}+\cos (\theta / 2) b^{\dagger}\right]|0,0\rangle \\
& =i \sin (\theta / 2)|1,0\rangle+\cos (\theta / 2)|0,1\rangle \tag{245}
\end{align*}
$$

Quantum beamsplitter

State transformations

- n photons

$$
\begin{equation*}
U|n, 0\rangle=U \frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0,0\rangle=\frac{1}{\sqrt{n!}} U\left(a^{\dagger}\right)^{n} U^{\dagger} U|0,0\rangle \tag{246}
\end{equation*}
$$

With $U\left(a^{\dagger}\right)^{n} U^{\dagger}=\left(U a^{\dagger} U^{\dagger}\right)^{n}$,

$$
\begin{equation*}
U|n, 0\rangle=\frac{1}{\sqrt{n!}}\left[\cos \frac{\theta}{2} a^{\dagger}+i \sin \frac{\theta}{2} b^{\dagger}\right]^{n}|0,0\rangle \tag{247}
\end{equation*}
$$

expansion of the r.h.s.

$$
\begin{equation*}
U|n, 0\rangle=\sum_{p=0}^{n}\binom{n}{p}^{1 / 2}[\cos (\theta / 2)]^{n-p}[i \sin (\theta / 2)]^{p}|n-p, p\rangle \tag{248}
\end{equation*}
$$

Quantum beamsplitter

State transformations

- n photons, balanced splitter $(\theta=\pi / 2)$

$$
\begin{equation*}
U(\pi / 2,0)|n, 0\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{p=0}^{n}\binom{n}{p}^{1 / 2}(i)^{p}|n-p, p\rangle \tag{249}
\end{equation*}
$$

- Random output selection for each photon
- A massively entangled state of the two output modes

Quantum beamsplitter

State transformations

- Coherent state $|\alpha\rangle$

$$
\begin{equation*}
U|\alpha, 0\rangle=U D_{a}(\alpha) U^{\dagger}|0,0\rangle \tag{250}
\end{equation*}
$$

rewrites, with $U f(A) U^{\dagger}=f\left(U A U^{\dagger}\right)$

$$
\begin{equation*}
U D(\alpha) U^{\dagger}=e^{\alpha U a^{\dagger} U^{\dagger}-\alpha^{*} U a U^{\dagger}} \tag{251}
\end{equation*}
$$

and

$$
\begin{equation*}
U|\alpha, 0\rangle=D_{a}[\alpha \cos (\theta / 2)] D_{b}[i \alpha \sin (\theta / 2)]|0,0\rangle \tag{252}
\end{equation*}
$$

finally

$$
\begin{equation*}
U|\alpha, 0\rangle=|\alpha \cos (\theta / 2), i \alpha \sin (\theta / 2)\rangle \tag{253}
\end{equation*}
$$

An unentangled states, with two coherent amplitudes split according to the classical laws.

Quantum beamsplitter

State transformations

- Photon collision on a beamsplitter

$$
\begin{equation*}
U|1,1\rangle=U a^{\dagger} b^{\dagger}|0,0\rangle=U a^{\dagger} U^{\dagger} U b^{\dagger} U^{\dagger}|0,0\rangle \tag{254}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
U|1,1\rangle=\frac{i \sin \theta}{\sqrt{2}}[|2,0\rangle+|0,2\rangle]+\cos \theta|1,1\rangle \tag{255}
\end{equation*}
$$

which is, in general, an entangled state. Balanced beam-splitter ($\theta=\pi / 2$):

$$
\begin{equation*}
U(\pi / 2,0)|1,1\rangle=(|2,0\rangle+|0,2\rangle) / \sqrt{2} \tag{256}
\end{equation*}
$$

Photon bunching due to their bosonic nature.

Relaxation

Jump operators

Learn how to treat the coupling of a field mode to the external world. Examples of physical situations

- Propagation of a beam in a diffusive medium
- Field in a cavity with output coupling (laser)
- Field in a box with imperfect conductivity (real cavity)

Relaxation

Jump operators
Only two possible jump operators at finite temperature T

- $L_{-}=\sqrt{\kappa_{-}}$a: loss of a photon in the environment (even when $T=0$)
- $L+-=\sqrt{\kappa_{+}} a^{\dagger}$: creation of a thermal excitation

Jump rates linked to the temperature of the environment

$$
\begin{equation*}
\kappa_{+}=\kappa_{-} e^{-\hbar \omega / k_{b} T} \tag{257}
\end{equation*}
$$

Using

$$
\begin{equation*}
n_{\mathrm{th}}=\frac{1}{e^{\hbar \omega / k_{\mathrm{b}} T}-1} \tag{258}
\end{equation*}
$$

we get

$$
\begin{equation*}
\frac{\kappa_{-}}{\kappa_{+}}=\frac{1+n_{\mathrm{th}}}{n_{\mathrm{th}}} \tag{259}
\end{equation*}
$$

and write

$$
\begin{equation*}
\kappa_{-}=\kappa\left(1+n_{\mathrm{th}}\right) ; \quad \kappa_{+}=\kappa n_{\mathrm{th}} \tag{260}
\end{equation*}
$$

Relaxation

Lindblad equation

$$
\begin{align*}
\frac{d \rho}{d t}= & -i \omega_{c}\left[a^{\dagger} a, \rho\right]-\frac{\kappa\left(1+n_{\mathrm{th}}\right)}{2}\left(a^{\dagger} a \rho+\rho a^{\dagger} a-2 a \rho a^{\dagger}\right) \\
& -\frac{\kappa n_{\mathrm{th}}}{2}\left(a a^{\dagger} \rho+\rho a a^{\dagger}-2 a^{\dagger} \rho a\right) \tag{261}
\end{align*}
$$

where we have discarded the vacuum energy. Note that all of the Hamiltonian part can be removed by an interaction representation (relaxation terms unchanged). For the photon number distribution:

$$
\begin{align*}
\frac{d p(n)}{d t}= & \kappa\left(1+n_{\mathrm{th}}\right)(n+1) p(n+1)+\kappa n_{\mathrm{th}} n p(n-1) \\
& -\left[\kappa\left(1+n_{\mathrm{th}}\right) n+\kappa n_{\mathrm{th}}(n+1)\right] p(n) \tag{262}
\end{align*}
$$

Relaxation

Thermal equilibrium

Detailed balance argument

$$
\begin{equation*}
\kappa\left(1+n_{\mathrm{th}}\right) n p(n)=\kappa n_{\mathrm{th}} n p(n-1) \tag{263}
\end{equation*}
$$

leading to:

$$
\begin{equation*}
\frac{p(n)}{p(n-1)}=\frac{n_{\mathrm{th}}}{1+n_{\mathrm{th}}}=e^{-\hbar \omega / k_{b} T} \tag{264}
\end{equation*}
$$

The expected Maxwell equilibrium

Relaxation

Fock states

At $T=0$, relaxation of a Fock state

- Jump : removal of a photon
- No jump: non hermitian Hamiltonian

$$
\begin{equation*}
H_{e}=-i \hbar J=-i \hbar \kappa a^{\dagger} a / 2 \tag{265}
\end{equation*}
$$

Leaves photon number states invariant

Relaxation

Fock states

Relaxation of a 10-photon Fock state.

Relaxation

Coherent state

Monte Carlo trajectory

- Jump: no evolution since $|\alpha\rangle$ is an eingenstate of a
- No jumps: evolution with non hermitian hamiltonian, equivalent to a complex mode frequency

$$
\begin{equation*}
|\beta\rangle \rightarrow\left|\beta e^{-\kappa \tau / 2}\right\rangle \tag{266}
\end{equation*}
$$

A coherent state remains coherent, with an exponentially damped amplitude.

Relaxation

Coherent state

No change of the photon number in a quantum jump ? A bayesian argument. $p(n \mid c)$ photon number distribution before the jump knowing that a jump occurs ('click' in the environment.) With

$$
\begin{gather*}
p(n, c)=p(c \mid n) p(n)=p(n \mid c) p_{c} \tag{267}\\
p(n \mid c)=p(n) \frac{p(c \mid n)}{p_{c}}=\frac{n}{\bar{n}} p(n)=e^{-\bar{n}} \frac{\bar{n}^{n-1}}{(n-1)!}=p(n-1) \tag{268}
\end{gather*}
$$

A translated Poisson distribution with $\bar{n}+1$ photons on the average. After jump photon number unchanged. Explains why the photon number distribution is invariant in a jump. Specific property of coherent states.

