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Planck 1900

The Blackbody problem
Emission by a small hole in a heated oven. What is known at Planck’s
time.

The radiation is universal
Stefan’s law

P = σST 4 (1)

where σ = 5.67 10−8 W/m2K4

Lambert’s law
dP = LS cos θ dΩ (2)

where the luminance L is related to the total density of energy in the
oven u =

∫
uν dν, by:

L =
cu

4π
(3)

P =
cSu

4
(4)

and

u =
4

c
σT 4 (5)
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Planck 1900

The Blackbody problem

Emission by a small hole in a heated oven. What is known at Planck’s
time?

Wien’s displacement law

uν = ν3f
( ν
T

)
(6)

Wien’s phenomenological model

uv = αν3e−γν/T , (7)

And many precise measurements of the spectrum (pyrometry).
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Planck 1900

The Blackbody problem
Counting the modes

Assume a rectangular volume for the oven, with periodic boundary
conditions. Support only plane waves with k = (kx , ky , kz) so that

kx =
2π

Lx
nx (8)

where nx ,y ,z is a set of three positive or negative integers. Two orthogonal
polarizations for each set of integers. Energies of all these ‘modes’ add up
independently (detailed justification later).
Nν the total number of modes k < 2πν/c. Number of modes per unit
volume between ν and ν + dν: ρν dν

ρν =
1

V
dNν
dν

(9)
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Planck 1900

The Blackbody problem
Counting the modes

Counting the modes with a frequency lower than ν amounts to counting
twice the number of points with integer coordinates in a sphere of radius
2πν/c :

Nν = 2
4π
3

(
2πν
c

)2

8π3

V
=

8π

3

ν3

c3
V (10)

where V is the box volume. Hence

ρν =
8π

c3
ν2 (11)
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Planck 1900

The Blackbody problem
Rayleigh Jeans argument

Attribute the average thermal energy kbT to each mode

uν = kbTρν (12)

Fits with observation at low frequency

Absurd at high frequencies: divergence of the spectrum and infinite
power

Classical statistical physics fails at explaining the blackbody radiation !
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Planck 1900

The Blackbody problem
Planck’s argument

The light quantum

Planck’s hypothesis

The exchanges of energy between field and matter occur as multiples of a
fundamental quantum

hν (13)

where h is a ‘Hilfeconstant’. Hence E = nhν.

Average energy per mode (standard statistical physics)

E = hν

∑∞
n=0 ne−nhν/kbT∑∞
n=0 e−nhν/kbT

(14)
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Planck 1900

The Blackbody problem
Planck’s argument

With β = 1/kbT and χ = βhν, we note that∑
exp(−χn) = 1/[1− exp(−χ)] and∑
n exp(−χn) = −(d/dχ)1/[1− exp(−χ)] = exp(−χ)/[1− exp(−χ)]2

E = hνn = hν
1

eχ − 1
(15)

We finally get the Planck’s law:

uν =
8πhν3

c3

1

ehν/kbT − 1
(16)

In excellent agreement with experiments if

h = 6.62 10−34 J/s (17)
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Planck 1900

The Blackbody problem
Limits

For small frequencies: Rayleigh Jeans

uν =
8πν2

c3
kbT (18)

the classical predictions without field quantization (many photons per
mode).

For large frequencies: phenomenological Wien’s law

uν =
8πhν3

c3
e−hν/kbT (19)

Explicit expression of Stefan’s constant

σ =
2π5

15

k4
b

c2h3
(20)
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Planck 1900

The Blackbody problem
Einstein 1905

A more solid justification of the heuristic Plank’s hypothesis. Starting
point

uν = αν3e−hν/kbT = αν3e−γνT (21)

with γ = h/kb. This leads by a simple inversion to:

T = − γν

ln uν/αν3
(22)

Density of entropy s, ds/du = 1/T and, by integration over u

s = −
∫ ∞

0
du′

ln u′/αν3

γν

= − u

γν

[
ln

u

αν3
− 1
]

(23)
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Planck 1900

The Blackbody problem
Einstein 1905

Total entropy in volume V, S = sV, and total energy E = uV linked by

S = − E

γν

[
ln

E

Vαν3
− 1

]
(24)

S0 the entropy for the volume V0

S − S0 =
E

γν
ln
V
V0

(25)

Compare to the entropy variation of a perfect gas in an isothermal
compression

S − S0 = kbN ln
V
V0

(26)

where N is the total number of particles. Nkb = Ekb/hν and E/N = hν.
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Field eigenmodes

Objective

To quantify the field, we must identify a set of orthogonal modes, the
relevant dynamical variables and quantify them according to the
‘canonical’ quantization procedure. The main technical difficulty in field
quantization is thus a classical electromagnetism calculation.
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Field eigenmodes

Eigenmodes
Positive frequency fields

Time Fourier transform of electric field

E(r, t) =
1√
2π

∫ ∞
−∞

Ẽ(r, ω)e−iωt dω (27)

Since E is a real field,
Ẽ∗(r, ω) = Ẽ(r,−ω) (28)

Define the ‘positive frequency field’

E+(r, t) =
1√
2π

∫ ∞
0

Ẽ(r, ω)e−iωt dω (29)

and the ‘negative frequency field’

E−(r, t) =
1√
2π

∫ 0

−∞
Ẽ(r, ω)e−iωt dω =

(
E+(r, t)

)∗
(30)

Hence
E(r, t) = E+(r, t) + E−(r, t) (31)
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Field eigenmodes

Eigenmodes
Eigenmodes basis

‘Box’ of limiting conditions with a total volume V. Orthogonal basis for
the solutions of Maxwell equations (a Hilbert space)

f`(r)e−iω`t (32)

where the dimensionless amplitude f` is divergence-free and obeys the
Helmholtz equation:

∆f` +
ω2
`

c2
f` = 0 (33)

Orthogonality: ∫
V
d3r f∗` (r) · f`′(r) = δ`,`′V (34)

Normalization: ∫
V
d3r |f`(r)|2 = V (35)

J.M. Raimond Atoms and photons September 12, 2016 15 / 105



Field eigenmodes

Eigenmodes
Eigenmodes basis

Expand the positive frequency field on this basis

E+(r, t) =
∑
`

E`(t)f`(r) (36)

where

E`(t) =
1

V

∫
E+(r, t) · f∗` (r) d3r (37)

The amplitude is obviously a harmonic function of time

E`(t) = E`(0)e−iω`t (38)

Finally

E+(r, t) =
∑
`

E`(0)e−iω`tf`(r) (39)
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Field eigenmodes

Eigenmodes
Plane-wave basis

A simple basis for a rectangular box and periodic boundaries.

Set of plane waves with
kn = (kx , ky , kz) = (nx2π/Lx , ny2π/Ly , nz2π/Lz), where the ns are
positive or negative.

For each n = (nx , ny , nz), two orthogonal linear polarizations ε1 and
ε2, perpendicular to k: ε1 × ε2 = uk.

Basis
f`(r) = ε`e

ik`·r (40)

with ` = (nx , ny , nz , ε)

Circular polarization basis

ε± =
ε1 ± iε2√

2
(41)

ε+ × ε− = −iuk (42)
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Field eigenmodes

Eigenmodes
Mode basis change

Two sets of modes f` and gp checking the same limiting conditions

f` =
∑
p

U`pgp . (43)

where U`p connects only modes with the same frequency.

U`p =
1

V

∫
f` · g∗p d3r (44)
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Field eigenmodes

Eigenmodes
Mode basis change

Check that U is unitary

δ`,`′ =
1

V

∫
f∗` · f`′ d3r =

∑
p,p′

U∗`pU`′p′
1

V

∫
g∗p · gp′ d

3r (45)

Using the orthonormality of g:

δ`,`′ =
∑
p

U∗`pU`′p =
∑
p

U`′pU
†
p` (46)

and hence 11 = UU†
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Field eigenmodes

Normal variables
Potential vector

Choose a simple set of dynamical variables. The potential vector A is
divergence-free in the Coulomb gauge and E = −∂A/∂t. Can be thus
expanded on the same basis as E

A+(r, t) =
∑
`

A`(t)f`(r) (47)

Choose the A(t) (harmonic functions of time) as the normal variables and
separate real and imaginary parts

A`(t) = A`(0)e−iωt = x`(t) + ip`(t) (48)
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Field eigenmodes

Normal variables
All fields

From E+ = −∂A+/∂t

E`(t) = −dA`
dt

= iω`A` (49)

and hence
E+(r, t) =

∑
`

iω`A`(t)f`(r) (50)

Magnetic field:

B+(r, t) =
∑
`

A`(t)h`(r) (51)

where
h`(r) = ∇× f`(r) (52)
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Field eigenmodes

Field energy

The total field energy

H =
ε0

2

∫
E 2 +

1

2µ0

∫
B2 (53)

must be written in terms of real fields

E = 2Re E+ = 2Re
∑
`

iω`A`f` (54)

Taking into account the mode orthogonality

H =
∑
`

H` (55)

Remains to evaluate energy of one given mode. Drop index ` for the time
being.
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Field eigenmodes

Field energy
Electric energy

Real field
E = iω [Af −A∗f∗] (56)

or
E = −2ω

[
xf ′′ + pf ′

]
(57)

with
f = f ′ + if ′′ (58)

He = 2ω2ε0

[
x2

∫
(f ′′)2 + p2

∫
(f ′)2 + 2xp

∫
f ′ · f ′′

]
(59)
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Field eigenmodes

Field energy
Magnetic energy

With
B = Ah +A∗h∗ = 2xh′ − 2ph′′ (60)

we get

Hb =
2

µ0

[
x2

∫
(h′)2 + p2

∫
(h′′)2 − 2xp

∫
h′ · h′′

]
(61)

Similar, but not obviously equal, to the electric energy.

J.M. Raimond Atoms and photons September 12, 2016 24 / 105



Field eigenmodes

Field energy
Comparing the energies

Let us start with the integral of (h′)2, with h = ∇× f. Using

∇ · (a× b) = b · (∇× a)− a · (∇× b) (62)

we can write

∇ · [f ′ × (∇× f ′)] = (∇× f ′)2 − f ′ · (∇×∇× f ′) (63)

Using that these fields are divergence-free and with Helmoltz equation:

∇ · [f ′ × (∇× f ′)] = (h′)2 − ω2

c2
(f ′)2 (64)

Integrating over space: ∫
(h′)2 =

ω2

c2

∫
(f ′)2 (65)

Similarly ∫
(h′′)2 =

ω2

c2

∫
(f ′′)2 (66)
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Field eigenmodes

Field energy
Comparing the energies

Let us examine is
∫

h′ · h′′. With

∇ · [f ′ × (∇× f ′′)] = (∇× f) · (∇× f ′′)− f ′ · (∇×∇× f ′′) (67)

we get ∫
h′ · h′′ =

ω2

c2

∫
f ′ · f ′′ (68)

Hence

Hb = 2ω2ε0

[
x2

∫
(f ′)2 + p2

∫
(f ′′)2 − 2xp

∫
f ′ · f ′′

]
(69)

Using ∫
(f ′)2 +

∫
(f ′′)2 = V (70)

we get finally
H = 2ω2ε0V

[
x2 + p2

]
(71)
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Field eigenmodes

Field energy
Total field energy

The total energy of the radiation field is thus:

H =
∑
`

H` =
∑
`

2ω2
` ε0V

[
x2
` + p2

`

]
(72)

A collection of independent harmonic oscillators.
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Field eigenmodes

Field energy
Canonical variables

Need canonically conjugate variables for quantization: xc and pc such
that

dxc
dt

=
∂H

∂pc
and

dpc
dt

= − ∂H
∂xc

(73)

x and p are not canonical, since

dx

dt
= ωp 6= ∂H

∂p
= 4ω2ε0Vp (74)

Canonical amplitude

α(t) = 2
√
ε0ωVA(t) (75)

Canonical position and momentum:

α(t) = xc + ipc , (76)

i.e.
xc = 2

√
ε0ωVx and pc = 2

√
ε0ωVp (77)
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Field eigenmodes

Field energy
Canonical variables

Mode energy

H =
ω

2

[
x2
c + p2

c

]
(78)

and obviously
dxc
dt

=
∂H

∂pc
and

dpc
dt

= − ∂H
∂xc

(79)

Proper canonical variables. Note that the xc and pc coordinates are not
dimensionless (their joint dimension is the square root of an action)
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Field eigenmodes

Field momentum
Total momentum

Density of momentum proportional to the Poynting vector

g =
Π

c2
with Π =

E× B

µ0
(80)

The plane wave mode basis is most convenient to describe the momentum

E+(r, t) =
∑
`

E+
` =

∑
`

iω`A`(t)ε`e
ik`·r (81)

and
B+(r, t) =

∑
`

B+
` =

∑
`

A`(t)(ik` × ε`)e
ik`·r (82)
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Field eigenmodes

Field momentum
Total momentum

Using orthogonalities of modes and polarizations

P =
∑
`

P` (83)

with

P` = ε0

∫
(E+

` + E−` )× (B+
` + B−` ) (84)

and after a painful calculation

P` = 2ε0Vω`|A`|2ε` × (k` × ε`) (85)

or, finally

P =
1

2

∑
`

|α`|2k` (86)

with a clear interpretation.
J.M. Raimond Atoms and photons September 12, 2016 31 / 105



Field eigenmodes

Field momentum
Angular momentum

Angular momentum density r × g and hence

J = ε0

∫
r × (E× B) d3r (87)

A difficult calculation leads to

J = L + S , (88)

where

S = ε0

∫
E× A d3r (89)

is the field’s ‘intrinsic angular momentum’ and

L = ε0

∫
d3r

∑
j

Ej(r · ∇)Aj , j = (x , y , z) (90)

is the field’s ‘orbital angular momentum’.
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Field eigenmodes

Field momentum
Spin angular momentum

Plane wave basis with circular polarizations

S = iε0V
∑
n

ωn

[
An+A∗n+(ε+ × ε∗+) +An−A∗n−(ε− × ε∗−)− c.c.

]
(91)

Using ε+ × ε∗+ = ε+ × ε− = −iuk and ε− × ε∗− = iuk

S =
1

2

∑
n

[
|αn+|2 − |αn−|2

]
uk (92)

with an equally simple interpretation.
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Field quantization

Field quantization

The field is a collection of independent harmonic oscillators. Let us
quantify all of them independently, using the Dirac approach. The
conjugate classical variables xc and pc should be replaced by two operators
X and P (position and momentum operators, dimension also the square
root of an action) acting in an infinite dimension Hilbert space, with the
commutation rule:

[X ,P] = i~ (93)
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Field quantization

Field quantization
Annihilation and creation operators

a =
1√
2~

(X + iP) (94)

and

a† =
1√
2~

(X − iP) (95)

with [
a, a†

]
= 11 (96)

Or

X =

√
~
2

(
a + a†

)
(97)

and

P = i

√
~
2

(
a† − a

)
(98)
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Field quantization

Field quantization
Field quadratures

Define reduced units

X0 =
X√
2~

and P0 =
P√
2~

(99)

With these definitions

[X0,P0] =
i

2
(100)

a = X0 + iP0 , a† = X0 − iP0 , X0 =
a + a†

2
, P0 = i

a† − a

2
(101)
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Field quantization

Field quantization
Hamiltonian

H =
ω

2
(X 2 + P2) = ~ω(X 2

0 + P2
0 ) (102)

or

H =
~ω
4

[
(a + a†)2 − (a† − a)2

]
(103)

and, in the ‘normal order’,

H = ~ω
(
a†a +

1

2

)
(104)

whose diagonaization is described in all textbooks.
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Field quantization

Field quantization
Number operator

N = a†a (105)

Commutation relations:

[N, a] = −a and
[
N, a†

]
= a† (106)

Eingenvalues: all positive integers, with nondegenerate eignestates

N |n〉 = n |n〉 , (107)

Hence, the eigenergies are

En =

(
n +

1

2

)
~ω (108)

Ground state: ‘vacuum’, |0〉, energy ~ω/2
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Field quantization

Field quantization
Fock states

|n〉 are the ‘photon number states’ with the orthogonality relation

〈n |p〉 = δn,p (109)

Annihilation and creation of photons with:

a |n〉 =
√
n |n − 1〉 (110)

with
a |0〉 = 0 (111)

and, similarly
a† |n〉 =

√
n + 1 |n + 1〉 (112)

Hence

|n〉 =
(a†)n√

n!
|0〉 (113)

J.M. Raimond Atoms and photons September 12, 2016 39 / 105



Field quantization

Field quantization
All modes

H |n1, . . . , n` . . .〉 = En |n1, . . . , n` . . .〉 (114)

with

En =
∑
`

(
n`~ω` +

~ω`
2

)
(115)

and

|n1, . . . , n` . . .〉 =
∏
`

(a†`)
n`

√
n`!
|0〉 (116)

Note that the vacuum state has an infinite energy (more on that later).
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Field quantization

Field quantization
Vector potential operator

Classical normal variables:

A =
1

2
√
ε0ωV

(xc + ipc) (117)

Corresponding quantum operators

A` =
1

2
√
ε0ω`V

(X` + iP`) =

√
~

2ε0ω`V
a` (118)

Positive frequency vector potential

A+(r) =
∑
`

√
~

2ε0ω`V
a`f`(r) (119)

Hermitian vector potential:

A(r) =
∑
`

√
~

2ε0ω`V

(
a`f`(r) + a†`f

∗
` (r)

)
(120)
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Field quantization

Field quantization
Electric field operator

The hermitian electric field is similarly:

E(r) = i
∑
`

E`
(
a`f`(r)− a†`f

∗
` (r)

)
(121)

where we define the ‘field per photon in mode `’ by

E` =

√
~ω`

2ε0V
(122)
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Field quantization

Field quantization
Magnetic field operator

B(r) =
∑
`

√
~

2ε0ω`V

(
a`h`(r) + a†`h

∗
` (r)

)
(123)

with h` = ∇× f`
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Field quantization

Field quantization
Plane wave mode basis

A+(r) =
∑
`

√
~

2ε0ω`V
a`ε`e

ik`·r (124)

E+(r) = i
∑
`

E`a`ε`e ik`·r (125)

B+(r) =
∑
`

√
~

2ε0ω`V
a`(ik` × ε`)e

ik`·r (126)
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Field quantization

Field quantization
Heisenberg picture

Evolution of annihilation operator

i~
daH
dt

= [aH ,H] i.e.
daH
dt

= −iωaH (127)

whose immediate solution is

aH(t) = aH(0)e−iωt = ae−iωt (128)
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Field quantization

Field quantization
Momentum, angular momentum

Total momentum by replacing |α`|2 in the classical expression by
α∗`α` and α` by a`

√
2~

P =
∑
`

~kl a
†
`a` (129)

Similarly

S =
∑
n

~ukn [Nn+ − Nn−] (130)
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Field quantization

Field quantization
Field quadratures

Eigenstates of the quadratures:

X0 |x〉 = x |x〉 and P0 |p〉 = p |p〉 (131)

Wavefunctions:
Ψ(x) = 〈x |Ψ〉 (132)

For the vacuum:

Ψ0(x) =

(
2

π

)1/4

e−x
2

(133)

Also in the |p〉 representation:

Ψ̃0(p) =

(
2

π

)1/4

e−p
2

(134)

Suggests a pictorial representation of the vacuum as a small circle in phase
plane.
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Field quantization

Field quantization
Field quadratures

For the Fock state |n〉:

Ψn(x) =

(
2

π

)1/4 1√
2nn!

e−x
2
Hn(x

√
2) (135)

where Hn is the nth Hermite polynomial defined by

Hn(u) = (−1)neu
2 dn

dun
e−u

2
(136)

These wavefunctions have n nodes and a a parity (−1)n
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Field quantization

Field quantization
Field quadratures

General field quadratures

Xφ =
ae−iφ + a†e iφ

2
(137)

Commutation: [
Xφ,Xφ+π/2

]
=

i

2
(138)

Heisenberg relations

∆Xφ∆Xφ+π/2 ≥
1

4
(139)

Eigenstates Xφ |xφ〉 = xφ |xφ〉 with

∣∣xφ+π/2

〉
=

1√
π

∫
dyφe

2ixφ+π/2yφ |yφ〉 (140)
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Field quantization

Field quantization
Mode basis change

From basis f` to gp, with

f` =
∑
p

U`pgp (141)

where U`p is a unitary matrix that connects modes with identical
frequencies.
The positive frequency part of the electric field can be written as:

E+ = i
∑
`

E`f`(r)a`

= i
∑
`,p

E`U`pa`gp(r)

=
∑
p

Epgp(r)bp (142)
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Field quantization

Field quantization
Mode basis change

Defines the new annihilation operators

bp =
∑
`

U`pa` (143)

and using unitarity U∗`p = U†p`

b†p =
∑
`

U†p`a
†
` (144)
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Field quantization

Field quantization
Mode basis change

Exercise: check new bosonic commutation rules[
bp, b

†
q

]
=

∑
`,m

U`pa`U
†
qma

†
m − U†qma

†
mU`pa`

=
∑
`,m

U`pU
†
qm

[
a`, a

†
m

]
=

∑
`

U†q`U`p

= δp,q (145)
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Field quantum states

Fock states
A basis of the Hilbert space

|Ψ〉 =
∑
n

cn |n〉 (146)

Photon number distribution

pn = |cn|2 (147)

Mean number of photons

n =
∑
n

npn (148)

Photon number variance

∆N2 =
〈
N2
〉
− 〈N〉2

=
∑
n

(n − n)2 pn (149)
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Field quantum states

Fock states

Statistical mixtures
ρ =

∑
n,p

ρnp |n〉 〈p| (150)

Photon number distribution
ρnn = pn (151)

Note that Fock states are not invariant in a mode basis change

|np〉 =
(b†p)np√

n!
|0〉 =

(∑
` U
†
p`a
†
`

)np
√
n!

|0〉 (152)
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Field quantum states

Fock states
Non classicality of Fock states

Fock states are very non-classical

A large energy

Zero average fields and potentials since 〈n| a |n〉 = 0

Can we find more intuitive field states? Yes: Coherent states.
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Field quantum states

Coherent states
Displacement operator

A unitary defined by:

D(α) = eαa
†−α∗a (153)

where α is an arbitrary complex amplitude

α = α′ + iα′′ (154)

D(α)†D(α) = 11 (155)

and
D(α)† = D(−α) (156)
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Field quantum states

Coherent states
Displacement operator

An equivalent expression

D(α) = e2iα′′X0−2iα′P0 (157)

Using the Glauber relation

eAeB = eA+Be [A,B]/2 (158)

valid when
[A, [A,B]] = [B, [A,B]] = 0 (159)

D(α) = e−iα
′α′′e2iα′′X0e−2iα′P0 (160)

a product of displacement operators:

e−2iα′P0 |x〉 =
∣∣x + α′

〉
(161)

e2iα′′X0 |p〉 =
∣∣p + α′′

〉
(162)
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Field quantum states

Coherent states
Combination of displacements

Using Glauber
D(α)D(β) = e(αβ∗−α∗β)/2D(α + β) (163)

Note that

Φ = (αβ∗ − α∗β)/2i =
α′′β′ − α′β′′

2
(164)

surface of the triangle with sides α and β.
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Field quantum states

Coherent states
Displacement of annihilation

Compute D(−α)aD(α). Use Baker-Hausdorff lemma

eAae−A = a + [A, a] +
1

2!
[A, [A, a]] + . . . (165)

for A = −αa† + α∗a, with [A, a] = α. Hence

D(−α)aD(α) = a + α11 (166)
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Field quantum states

Coherent states
Definition

The coherent states are defined as

|α〉 = D(α) |0〉 . (167)

Note that |0〉 is a coherent state. Coherent states in general are the
vacuum displaced by the complex amplitude α.
Wavefunction of a coherent state in the X0 representation:

Ψα(x) ∝ e−(x−α′)2
(168)

and in the P0 representation:

Ψ̃α(p) ∝ e−(p−α′′)2
(169)
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Field quantum states

Coherent states
Properties

Right-eigenstates of the annihilation operator

a |α〉 = aD(α) |0〉 = D(α)D(−α)aD(α) |0〉 = (a + α11) |0〉 = α |α〉
(170)

since a |0〉 = 0. Hence

〈α| a |α〉 = α and 〈α| a† |α〉 = α∗ (171)

Field operators have nonzero eigenvalues in the coherent states:

〈E〉 = iE (f(r)α− f∗(r)α∗) (172)

〈A〉 =
E
ω

(f(r)α + f∗(r)α∗) (173)
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Field quantum states

Coherent states
Properties

Average photon number

n = 〈α| a†a |α〉 = |α|2 (174)

Photon number variance. Using N2 = a†aa†a = (a†)2a2 + a†a〈
N2
〉

= |α|4 + |α|2 (175)

and
∆N2 = |α|2 = n (176)

∆N

n
=

1√
n

(177)
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Field quantum states

Coherent states
Properties

Expansion on the Fock state basis

D(α) = e−|α|
2/2eαa

†
e−α

∗a (178)

with a |0〉 = 0:

|α〉 = e−|α|
2/2eαa

† |0〉 (179)

Expand exponential:

|α〉 =
∑
n

cn |n〉 , (180)

with

cn = e−|α|
2/2 α

n

√
n!

(181)
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Field quantum states

Coherent states
Properties

Photon number distribution

pn = e−|α|
2 |α|2n

n!
= e−n

nn

n!
(182)

For large average photon numbers

pn ∝ e−(n−n)2/n (183)

Scalar product of coherent states

〈α |β〉 = e−(|α|2+|β|2)/2
∑
n,p

(α∗)nβp√
n!p!

〈n |p〉

= e−(|α|2+|β|2)/2eα
∗β (184)

Square modulus
|〈α |β〉 |2 = e−|α−β|

2
(185)
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Field quantum states

Coherent states
Properties

Overcomplete basis

11 =
1

π

∫
d2α |α〉 〈α| (186)

Demonstration:∫
d2α |α〉 〈α| =

∑
n,p

1√
n!p!

|n〉 〈p|
∫

d2α e−|α|
2
αn(α∗)p (187)

Switch to polar coordinates α = ρ exp(iθ)∫
ρdρdθ e−ρ

2
ρn+pe iθ(n−p) (188)

Cancels when n 6= p.
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Field quantum states

Coherent states
Properties

Overcomplete basis
For n = p

In = π

∫
du une−u (189)

with u = ρ2. Integration per parts leads to In = nIn−1 and In = πn!.
Hence ∫

d2α |α〉 〈α| = π
∑
n

|n〉 〈n| (190)
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Field quantum states

Coherent states
Properties

Overcomplete basis
Expansion is not uniquely defined:

|0〉 =
1

π

∫
d2α e−|α|

2/2 |α〉 (191)

and

|n〉 =
1

π
√
n!

∫
d2α e−|α|

2/2(α∗)n |α〉 (192)
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Field quantum states

Coherent states
Properties

Evolution

|Ψ(0)〉 = |α〉 = e−|α|
2/2
∑
n

αn

√
n!
|n〉 (193)

|Ψ(t)〉 = e−|α|
2/2
∑
n

αn

√
n!
e−inωte−iωt/2 |n〉

= e−iωt/2
∣∣αe−iωt〉 (194)

Evolution of the amplitude is the same as in classical physics

α(t) = α(0)e−iωt (195)
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Field quantum states

Phase space representations

Seeks an analogue of the classical phase space distributions f (x , p) of
statistical physics allowing us to compute any average by

o =

∫
f (x , p)o(x , p) dxdp (196)

Transpose that to a field statistical mixture defined by the density operator
ρ.
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Field quantum states

Phase space representations
Characteristic functions

Three operators ordering:

Normal: a on right. e.g. number operator a†a

Symmetric e.g. (aa† + a†a)

Anti-Normal e.g. aa†

Any operator expression can be put in one of these forms by proper
commutations of creation and annihilation operators.
Leads to three characteristic functions characterizing ρ
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Field quantum states

Phase space representations
Symmetric characteristic function

Symmetric characteristic function

C
[ρ]
s (λ) = 〈D(λ)〉 = Tr

[
ρeλa

†−λ∗a
]

(197)

with
C

[ρ]
s (0) = Tr(ρ) = 1 . (198)

D being unitary, all its eigenvalues have a unit modulus. Hence

|C [ρ]
s (λ)| ≤ 1 (199)

and
C

[ρ]
s (−λ) =

[
C

[ρ]
s (λ)

]∗
(200)

For a pure state

C
[|Ψ〉〈Ψ|]
s = 〈Ψ|D(λ) |Ψ〉 (201)
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Field quantum states

Phase space representations
Normal and anti-normal characteristic functions

Normal characteristic function

C
[ρ]
n (λ) = Tr

[
ρeλa

†
e−λ

∗a
]

(202)

Anti-normal characteristic function

C
[ρ]
an (λ) = Tr

[
ρe−λ

∗aeλa
†
]

(203)

Relations

C
[ρ]
n (λ) = e |λ|

2/2C
[ρ]
s (λ) C

[ρ]
an (λ) = e−|λ|

2/2C
[ρ]
s (λ) (204)
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Field quantum states

Phase space representations
The Husimi-Q representation

Definition:

Q [ρ](α) =
1

π2

∫
d2λ e(αλ∗−α∗λ)C

[ρ]
an (λ) (205)

After some algebra:

Q [ρ](α) =
1

π
Tr [ρ |α〉 〈α|] =

1

π
〈α| ρ |α〉 =

1

π
Tr[|0〉 〈0|D(−α)ρD(α)]

(206)
The Q distribution is positive, bounded by 1/π and normalized
(
∫
d2αQ(α) = 1).
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Field quantum states

Phase space representations
The Husimi-Q representation

A few states

Coherent state |β〉

Q [|β〉〈β|](α) =
1

π
| 〈α |β〉 |2 =

1

π
e−|α−β|

2
(207)

Fock state |n〉

Q [|n〉〈n|](α) =
1

π

|α|2n

n!
e−|α|

2
(208)
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Field quantum states

Phase space representations
The Husimi-Q representation

Cat state ∣∣Ψ±cat

〉
=

1√
N±

(|β〉 ± |−β〉) (209)

where:
N± = 2

(
1± e−2|β|2

)
(210)

Q [cat,±](α) =
1

πN±

[
e−|α−β|

2
+ e−|α+β|2 ± 2e−(|α|2+|β|2) cos(2βα′′)

]
(211)
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Field quantum states

Phase space representations
The Husimi-Q representation
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(a) Coherent state |β〉, with β =
√

5. (b) Five-photon Fock state. (c)
Schrödinger cat state, superposition of two coherent fields |±β〉, with
β =
√

5. (d) Statistical mixture of the same coherent components.
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Field quantum states

Phase space representations
The Wigner function

Definition:

W (α) =
1

π2

∫
d2λCs(λ)eαλ

∗−α∗λ (212)

After a long derivation (see complete lecture notes)

W (x , p) =
2

π
Tr[D(−α)ρD(α)P] (213)

where the unitary parity operator P is defined by

P |x〉 = |−x〉 ; P |p〉 = |−p〉 (214)
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Field quantum states

Phase space representations
The Wigner function

Properties of parity operator

P |n〉 = (−1)n |n〉 (215)

and hence
P = e iπa

†a (216)

The modulus of its average is lower than one. Thus

−2/π ≤W (α) ≤ 2/π (217)
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Field quantum states

Phase space representations
The Wigner function

Marginals of the Wigner distribution:

P(x) = 〈x | ρ |x〉 =

∫
dpW (x , p) (218)

and

P(p) = 〈p| ρ |p〉 =

∫
dx W (x , p) (219)

More generally,

P(pφ) =

∫
dxφW (xφ, pφ) (220)

with
xφ = x cosφ+ p sinφ ; pφ = −x sinφ+ p cosφ (221)
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Field quantum states

Phase space representations
The Wigner function

The average of any operator can be directly obtained from the Wigner
function

〈O〉 =

∫
dxdpW (x , p)os(x , p) (222)

where os is the symmetrized form of the operator O in terms of the field
quadratures.
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Field quantum states

Phase space representations
The Wigner function

A few states

Coherent state

W [|β〉〈β|](α) =
2

π
e−2|β−α|2 (223)

Thermal field

W [ρth](α) =
2

π

1

2nth + 1
e−2|α|2/(2nth+1) (224)
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Field quantum states

Phase space representations
The Wigner function

Squeezed vacuum S(ξ) |0〉 with

S(ξ) = e(ξ∗a2−ξa†2
)/2 (225)

Reduced fluctuations on X0

∆X0 = 1

2
e−ξ (226)

and
∆P0 = 1

2
eξ (227)

W [sq,ξ](x , p) =
2

π
e−2 exp(2ξ)x2

e−2 exp(−2ξ)p2
(228)
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Field quantum states

Phase space representations
The Wigner function
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(a) Vacuum state. (b) Coherent state with β =
√

5. (c) Thermal field
with nth = 1 photon on the average. (d) A squeezed vacuum state, with a
squeezing parameter ξ = 0.5.
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Field quantum states

Phase space representations
The Wigner function

Fock state

W [|n〉〈n|](α) =
2

π
(−1)ne−2|α|2Ln(4|α|2) (229)

with

W [|n〉〈n|](0) =
2

π
(−1)n (230)

W [|1〉〈1|](α) = − 2

π
(1− 4|α|2)e−2|α|2 (231)
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Field quantum states

Phase space representations
The Wigner function
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Wigner function of a five-photon Fock state.
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Field quantum states

Phase space representations
The Wigner function

Cat state

W [cat,±](α) =
1

π(1± e−2|β|2)

[
e−2|α−β|2 + e−2|α+β|2

± 2e−2|α|2 cos(4α′′β)
]

(232)
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Field quantum states

Phase space representations
The Wigner function
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Wigner functions of even (a) and odd (b) 10-photon π-phase cats. The
Wigner function provides a clear depiction of the non-classical features of
a quantum state.
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Beamsplitter

Beamsplitter
Coupling field modes

A simple model for coupling two modes of the radiation field

(A) (B)

( )a

( )a

( )a

( )a

( )b

( )b

( )b

( )b
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Beamsplitter

Beamsplitter
Classical model

Transformation of the electric field amplitudes(
E ′a
E ′b

)
= Uc

(
Ea

Eb

)
=

(
t(ω) r(ω)
r(ω) t(ω)

)(
Ea

Eb

)
(233)

where the unitary Uc can also be written in a simple case as

Uc(θ) =

(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
(234)
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Beamsplitter

Quantum beamsplitter
Hamiltonian model

Model the beamsplitter action as a transient application of the
Hamiltonian

Hab(t) = −~g(t)

2
(ab† + a†b) (235)

a and b: annihilation operators; g(t) slowly varying real function
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Beamsplitter

Quantum beamsplitter
Heisenberg point of view

Transformation of the annihilation operator:

a′ = U†aU (236)

where
U = e−(i/~)

∫
Hab(t) dt = e−iGθ/2 (237)

with

G = −(ab† + a†b) and θ =

∫
g(t) dt (238)

Using Baker-Hausdorff

a′ = U†aU = e iGθ/2ae−iGθ/2 = a +
iθ

2
[G , a]

+
i2θ2

2!22
[G , [G , a]] + · · ·+ inθn

n!2n
[G , [G , [· · ·, [G , a]]]] + · · ·(239)
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Beamsplitter

Quantum beamsplitter
Heisenberg point of view

With [G , a] = b and [G , [G , a]] = a, series sum up to

a′ = U†aU = cos(θ/2) a + i sin(θ/2) b (240)

and similarly:
b′ = U†bU = i sin(θ/2) a + cos(θ/2) b (241)

Noting that U†(θ) = U(−θ)

Ua†U† = cos(θ/2) a†+i sin(θ/2) b† ; Ub†U† = i sin(θ/2) a†+cos(θ/2) b†

(242)
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Beamsplitter

Quantum beamsplitter
State transformations

Transformation of some simple states:

No photon: |Ψ〉 = |0, 0〉. This state is obviously invariant

One photon in mode a

U |1, 0〉 = Ua† |0, 0〉 = Ua†U†U |0, 0〉 = Ua†U† |0, 0〉 (243)

and, using the Heisenberg point of view results in:

U |1, 0〉 =
[
cos(θ/2) a† + i sin(θ/2) b†

]
|0, 0〉

= cos(θ/2) |1, 0〉+ i sin(θ/2) |0, 1〉 (244)

One photon in mode b

U |0, 1〉 =
[
i sin(θ/2) a† + cos(θ/2) b†

]
|0, 0〉

= i sin(θ/2) |1, 0〉+ cos(θ/2) |0, 1〉 (245)
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Beamsplitter

Quantum beamsplitter
State transformations

n photons

U |n, 0〉 = U
(a†)n√

n!
|0, 0〉 =

1√
n!
U(a†)nU†U |0, 0〉 (246)

With U(a†)nU† = (Ua†U†)n,

U |n, 0〉 =
1√
n!

[
cos

θ

2
a† + i sin

θ

2
b†
]n
|0, 0〉 (247)

expansion of the r.h.s.

U |n, 0〉 =
n∑

p=0

(
n

p

)1/2

[cos(θ/2)]n−p [i sin(θ/2)]p |n − p, p〉 (248)
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Beamsplitter

Quantum beamsplitter
State transformations

n photons, balanced splitter (θ = π/2)

U (π/2, 0) |n, 0〉 =
1√
2n

n∑
p=0

(
n

p

)1/2

(i)p |n − p, p〉 (249)

I Random output selection for each photon
I A massively entangled state of the two output modes
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Beamsplitter

Quantum beamsplitter
State transformations

Coherent state |α〉

U |α, 0〉 = UDa(α)U† |0, 0〉 (250)

rewrites, with Uf (A)U† = f (UAU†)

UD(α)U† = eαUa
†U†−α∗UaU† (251)

and
U |α, 0〉 = Da [α cos(θ/2)]Db [iα sin(θ/2)] |0, 0〉 (252)

finally
U |α, 0〉 = |α cos(θ/2), iα sin(θ/2)〉 (253)

An unentangled states, with two coherent amplitudes split according
to the classical laws.
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Beamsplitter

Quantum beamsplitter
State transformations

Photon collision on a beamsplitter

U |1, 1〉 = Ua†b† |0, 0〉 = Ua†U†Ub†U† |0, 0〉 (254)

Hence:

U |1, 1〉 =
i sin θ√

2
[|2, 0〉+ |0, 2〉] + cos θ |1, 1〉 (255)

which is, in general, an entangled state. Balanced beam-splitter
(θ = π/2):

U(π/2, 0) |1, 1〉 = (|2, 0〉+ |0, 2〉) /
√

2 (256)

Photon bunching due to their bosonic nature.
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Field relaxation

Relaxation
Jump operators

Learn how to treat the coupling of a field mode to the external world.
Examples of physical situations

Propagation of a beam in a diffusive medium

Field in a cavity with output coupling (laser)

Field in a box with imperfect conductivity (real cavity)
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Field relaxation

Relaxation
Jump operators

Only two possible jump operators at finite temperature T

L− =
√
κ−a: loss of a photon in the environment (even when T = 0)

L +− =
√
κ+a

†: creation of a thermal excitation

Jump rates linked to the temperature of the environment

κ+ = κ−e
−~ω/kbT (257)

Using

nth =
1

e~ω/kbT − 1
(258)

we get
κ−
κ+

=
1 + nth

nth
(259)

and write
κ− = κ(1 + nth) ; κ+ = κnth (260)
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Field relaxation

Relaxation
Lindblad equation

dρ

dt
= −iωc

[
a†a, ρ

]
− κ(1 + nth)

2

(
a†aρ+ ρa†a− 2aρa†

)
−κnth

2

(
aa†ρ+ ρaa† − 2a†ρa

)
(261)

where we have discarded the vacuum energy. Note that all of the
Hamiltonian part can be removed by an interaction representation
(relaxation terms unchanged). For the photon number distribution:

dp(n)

dt
= κ(1 + nth)(n + 1)p(n + 1) + κnthnp(n − 1)

−[κ(1 + nth)n + κnth(n + 1)]p(n) (262)
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Field relaxation

Relaxation
Thermal equilibrium

Detailed balance argument

κ(1 + nth)np(n) = κnthnp(n − 1) (263)

leading to:
p(n)

p(n − 1)
=

nth

1 + nth
= e−~ω/kbT (264)

The expected Maxwell equilibrium
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Field relaxation

Relaxation
Fock states

At T = 0, relaxation of a Fock state

Jump : removal of a photon

No jump: non hermitian Hamiltonian

He = −i~J = −i~κa†a/2 (265)

Leaves photon number states invariant
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Field relaxation

Relaxation
Fock states

0 1 2 3 4 5
0

2

4

6

8

1 0

n

t / T
c

Relaxation of a 10-photon Fock state.
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Field relaxation

Relaxation
Coherent state

Monte Carlo trajectory

Jump: no evolution since |α〉 is an eingenstate of a

No jumps: evolution with non hermitian hamiltonian, equivalent to a
complex mode frequency

|β〉 →
∣∣∣βe−κτ/2

〉
(266)

A coherent state remains coherent, with an exponentially damped
amplitude.
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Field relaxation

Relaxation
Coherent state

No change of the photon number in a quantum jump ? A bayesian
argument. p(n|c) photon number distribution before the jump knowing
that a jump occurs (‘click’ in the environment.) With

p(n, c) = p(c |n)p(n) = p(n|c)pc (267)

p(n|c) = p(n)
p(c |n)

pc
=

n

n
p(n) = e−n

nn−1

(n − 1)!
= p(n − 1) (268)

A translated Poisson distribution with n + 1 photons on the average. After
jump photon number unchanged. Explains why the photon number
distribution is invariant in a jump. Specific property of coherent states.
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