Accéder sur le serveur HAL aux articles et aux thèses deposés par les auteurs

Les chercheurs du laboratoire Kastler Brossel déposent leurs publications sur l’archive ouverte :
HAL – Hyper Article en Ligne.

Dans cette rubrique vous avez accès aux publications du laboratoire et aux thèses classées par date, avec lien vers le texte déposé sur HAL.

 

 

 

Soutenances de thèses

Soutenances de thèses en 2016

Thibaut Karassouloff, le 1er avril

Thèse effectuée au sein de l’équipe optomécanique et mesures quantiques du Laboratoire Kastler Brossel, sous la direction d’Antoine Heidmann et de Tristan Briant. Elle a pour titre « Corrélations optomécaniques : étude du bruit quantique de pression de radiation ».

Résumé :

L’étude du couplage optomécanique, soit l’interaction entre un résonateur mécanique et la lumière venant mesurer sa position est née avec les recherches visant à détecter les ondes gravitationnelles. Ce couplage limite la sensibilité des mesures interférométriques nécessaires à leur observation. Cette limite est d’origine quantique : à tout appareil de mesure est associé un bruit (le bruit de phase des lasers). De plus, en vertu des inégalités de Heisenberg toute mesure d’un système le perturbe. On parle d’action en retour (liée aux bruits d’intensité des lasers). La lumière étant un objet quantique, il n’est pas possible de réduire simultanément les fluctuations de phase et d’intensité. La sensibilité d’une mesure interférométrique a donc pour minimum la limite quantique standard. Cette limite n’a jamais été observée à température ambiante. Nous décrivons dans ce manuscrit les effets de la pression de radiation sur un résonateur mécanique plan-convexe utilisé comme miroir de fond d’une cavité Fabry-Perot de grande finesse. A température ambiante, le bruit de pression de radiation est largement masqué par le bruit thermique. Ceci conduit à la mise en place d’une expérience pompe-sonde et à mesurer les corrélations entre ces deux faisceaux. En outre, cette expérience est très sensible au désaccord du laser avec la cavité. Nous utilisons une modulation de la position du résonateur afin de s’asservir le mieux possible à la cavité. Compte tenu du faible niveau de corrélations à mesurer, nous caractérisons les limites qu’impose le bruit classique des lasers. Nous présentons également le développement de nouveaux résonateurs optomecaniques en quartz.

 

 


 

 

Baptiste Gouraud, le 11 février

“Des nanofibres optiques comme interface entre lumière guidée et atomes froids – Un outil pour l’optique quantique”. Cette thèse a été réalisée au Laboratoire Kastler Brossel sous la direction de Julien Laurat.

Résumé :

Cette thèse a consisté à mettre en place une nouvelle expérience utilisant des atomes froids en interaction avec la lumière guidée par une nanofibre optique. Nous avons tout d’abord développé un banc de fabrication de nanofibres. En chauffant et étirant une fibre optique commerciale, on obtient un cylindre de silice de 400 nm de diamètre. La lumière guidée dans ces nanofibres est fortement focalisée sur toute la longueur de la fibre et exhibe de forts champs évanescents, ce qui permet d’obtenir une grande profondeur optique avec un faible nombre d’atomes. Après avoir inséré une nanofibre au milieu d’un nuage d’atomes, nous avons observé le phénomène de lumière lente dans les conditions de transparence électromagnétiquement induite. Nous avons aussi stoppé la lumière guidée et mémorisé l’information qu’elle contenait. Nous avons montré que ce protocole de mémoire optique fonctionne pour des impulsions lumineuses contenant moins d’un photon en moyenne. Ce système pourra donc être utilisé comme une mémoire quantique, un outil essentiel pour les futurs réseaux de communication quantique. Enfin, nous avons piégé les atomes dans un réseau optique au voisinage de la nanofibre grâce à de la lumière guidée par celle-ci. Par rapport à notre première série d’expériences, le nuage ainsi obtenu a un temps de vie plus long et interagit plus fortement avec la lumière guidée. Ce nouveau système devrait permettre d’implémenter efficacement d’autres protocoles d’optique quantique, comme la génération de photons uniques et l’intrication de deux ensembles atomiques distants.

Soutenances de thèses en 2015

Valérian Thiel, le 19 octobre

« Analyse modale d’un peigne de fréquence femtoseconde : corrélations spectrales classiques et quantiques », effectuée au Laboratoire Kastler Brossel sous la direction de Nicolas Treps.

Résumé :

Dans cette thèse, nous étudions les applications aux mesures de précision à la limite quantique d’un peigne de fréquence optique dans le régime femtoseconde, ainsi que les fluctuations de sa structure spectrale. Pour cela, nous utilisons un formalisme emprunté au domaine de l’optique quantique. Nous démontrons que la structure du peigne peut effectivement être décomposée sur une base de modes, dont chacun est relié à un paramètre physique. À l’aide de mesures projectives, nous montrons qu’il est alors possible d’accéder à une information portée par le champ électromagnétique (tel le délai temporel d’une impulsion), ainsi qu’aux fluctuations de la source laser (en analogie, la gigue temporelle). Finalement, nous proposons l’élaboration d’un système pour générer deux faisceaux quantiques “comprimés en temps”, puisqu’ils permettent de mesurer un délai avec une sensibilité accrue par rapport à l’utilisation de ressources classiques.

 


 

Raphaël Jannin, le 8 octobre

« Interférométrie atomique avec un condensat de Bose-Einstein : effet des interactions internes », effectuée sous la direction de Saïda Guellati-Khélifa et Pierre Cladé, au Laboratoire Kastler Brossel.

Résumé :

Le travail réalisé dans le cadre de cette thèse s’articule en deux volets. Le premier porte sur l’étude de l’effet des interactions entre atomes au sein d’un interféromètre atomique, dont la source est un condensat de Bose-Eintein. Nous présentons un modèle analytique permettant d’obtenir des expressions simples pour le déphasage induit par celles-ci. Ce modèle est comparé à des simulations numériques résolvant les équations de Gross-Pitaevskii couplées, et présente un excellent accord. Le second concerne la conception et la construction d’un nouveau dispositif expérimental visant à obtenir un condensat de Bose-Eintein dans le but de réaliser des mesures de haute précision par interférométrie atomique.

 


 

Manuel Andia, le 25 septembre

“Bloch oscillations of ultra-cold atoms : application to high-precision measurements”, which was carried out under the supervision of Saïda Guellati-Khélifa and Pierre Cladé, at Laboratoire Kastler Brossel.

Résumé :

Ce travail de thèse se développe autour de trois expériences. La première concerne la mesure du rapport h/m entre la constante de Planck et la masse d’un atome de rubidium. Dans le cadre de l’étude détaillée des effets systématiques, tels que la phase de Gouy ou l’effet Zeeman quadratique, nous avons développé une nouvelle source laser compacte et puissante (12W@780nm) permettant de réduire l’effet de la phase de Gouy d’un facteur 4. La deuxième expérience a porté sur la démonstration d’un nouveau schéma de gravimètre compact, s’appuyant sur les oscillations de Bloch pour faire léviter les atomes. Une mesure de l’accélération locale de la pesanteur a été réalisée avec une sensibilité préliminaire très prometteuse de 4.7E-7 g en 1s. La troisième expérience a permis d’obtenir un interféromètre atomique symétrique grâce à la technique de double diffraction Raman. Nous avons réalisé la chaîne de fréquences et le montage optique pour l’intégration de séparatrices à grand transfert d’impulsion (LMTBS) à base d’oscillations de Bloch.

 


 

Sébastien Garcia, le 18 septembre

Interfaces fibrées entre atomes uniques et photons uniques >> et effectuée sous la direction de Jakob Reichel et l’encadrement de Romain Long au Laboratoire Kastler Brossel.

Résumé :

Dans le cadre de l’étude expérimentale des états quantiques intriqués de particules uniques, il est nécessaire de développer des systèmes compacts, robustes et polyvalents. Motivés par la miniaturisation, la stabilité et la flexibilité apportées par les fibres optiques, nous présentons deux expériences où les fibres optiques servent d’interfaces pour piéger des atomes uniques et collecter les photons uniques émis. Dans un premier temps, en combinant une fibre optique monomode avec une lentille asphérique, un faisceau dipolaire permet de piéger un atome de rubidium unique par blocage collisionnel. Le refroidissement et le taux de pertes par collisions assistées par la lumière dans le piège dipolaire sont augmentés via une modulation de l’intensité du faisceau dipolaire dont l’effet sur la durée de vie de l’atome est expliqué. Une source fibrée de photons uniques à la demande est obtenue avec ce dispositif, produisant des photons dans un mode spatial et temporel à priori bien défini. Dans un second temps, nous présentons la conception d’une expérience couplant optimalement une chaîne d’atomes uniques piégés à une cavité Fabry-Pérot fibrée combinée avec une lentille à forte ouverture numérique pour imager et adresser les atomes individuellement. Un dispositif d’ablation laser de précision submicrométrique est alors construit pour réaliser et analyser in situ les formes de miroirs voulues à l’extrémité des fibres optiques. Nous présentons ensuite les cavités fibrées doublement résonantes avec une biréfringence contrôlée réalisées. Nous décrivons également le système expérimental construit pour la production rapide d’un nuage d’atomes froids et leur transport vers la cavité.

 


 

Alexandre Dareau, le 31 août

« Manipulation cohérente d’un condensat de Bose-Einstein d’ytterbium sur la transition “d’horloge” : de la spectroscopie au magnétisme artificiel » (voir résumé ci-dessous), réalisée au Laboratoire Kastler Brossel sous la direction de Fabrice Gerbier.

Résumé :

Dans cette thèse, nous faisons état de la construction d’un dispositif expérimental capable de piéger et refroidir un gaz d’ytterbium, dans l’optique de simuler des champs magnétiques artificiels. Ce dispositif permettra, à terme, de produire et de caractériser des états quantiques fortement corrélés, semblables aux états rencontrés dans la physique de l’effet Hall quantique, entier ou fractionnaire.

Dans un premier temps, nous décrivons la construction des parties de notre dispositif consacrées au refroidissement optique de l’ytterbium 174. En particulier, nous présentons la conception d’un ralentisseur Zeeman, permettant le chargement direct d’un piège magnéto-optique effectué sur la transition d’intercombinaison de l’ytterbium. Après transport dans un piège optique, une étape de refroidissement évaporatif nous permet d’obtenir des condensats de Bose-Einstein contenant environ 50 000 atomes d’ytterbium. Les condensats produits sont alors chargés dans un réseau optique vertical à la longueur d’onde “magique”.

Nous présentons ensuite la construction d’un système laser étroit à 578nm capable d’exciter la transition “d’horloge” de l’ytterbium. Le laser est asservi sur une cavité Fabry-Perot de grande finesse servant de référence de fréquence, dont nous avons caractérisé les différentes propriétés. Nous présentons en particulier une méthode permettant de calibrer rapidement la fréquence absolue de la cavité par comparaison avec une transition de la molécule de diiode.

Finalement, nous présentons les résultats d’expériences de spectroscopie effectuées sur des condensats d’ytterbium à l’aide du laser étroit, ainsi que la manipulation cohérente du condensat sur la transition d’horloge au cours d’expériences d’oscillations de Rabi. Ces expériences préliminaires ouvrent notamment la voie à la mesure des propriétés colisionnelles de l’ytterbium 174.

 


 

Norman Kretzschmar, le 26 juin

« Experiments with Ultracold Fermi gases : Quantum Degeneracy of Potassium-40 and All-solid-state Laser Sources for Lithium », réalisée au Laboratoire Kastler Brossel sous la direction de Christophe Salomon et Frédéric Chevy.

Résumé :

Cette thèse présente de nouvelles techniques pour l’étude expérimentale des gaz quantique ultrafroids d’atomes fermioniques de lithium et de potassium. Dans la première partie de cette thèse, nous décrivons la conception et la caractérisation des nouveaux composants de notre dispositif expérimental capable de piéger et refroidir simultanément des atomes de 6Li et de 40K à des températures ultrabasses. Nous rendons compte d’une nouvelle technique de refroidissement sub-Doppler, reposant sur la transition de la raie D1 des atomes alcalins, pour refroidir des atomes de lithium et de potassium par laser. Après cette étape de mélasse, nous avons mesuré une densité dans l’espace des phases de l’ordre de 1e-4 à la fois pour le 6Li et le 40K. Nous présentons le refroidissement par évaporation forcée d’atomes de 40K qui commence dans un piège magnétique quadripolaire pluggé et continue dans un piège optique dipolaire. Dans ce contexte, nous rendons compte de la production d’un gaz quantique de Fermi dégénéré de 1.5e5 atomes de 40K dans un piège dipolaire croisé avec T/TF = 0.17, ce qui ouvre la voie à l’étude des superfluides de 40K en interaction forte. Dans la deuxième partie de cette thèse, nous présentons une source laser à état solide, de faible largeur spectrale et capable d’émettre 5.2 W de puissance autour de 671 nm, dans la gamme des longueurs d’onde des transitions de la raie D du lithium. La source repose sur un laser en anneau pompé par diode, émettant sur la transition à 1342 nm de Nd:YVO4, capable de produire 6.5 W de lumière dans un faisceau monomode limité par la diffraction. Nous rendons compte de trois différentes approches pour la génération de seconde harmonique du faisceau de sortie, à savoir en utilisant une cavité amplificatrice comprenant un cristal ppKTP, par doublage de fréquence intracavité et par un structure de guide d’onde de ppZnO:LN.

 


 

Kevin Makles, le 16 juin

Cette thèse a été effectuée au sein de l’équipe optomécanique et mesures quantiques du Laboratoire Kastler Brossel, sous la direction d’Antoine Heidmann et de Tristan Briant. Elle porte sur les « Nano-membranes à cristal photonique pour l’optomécanique ».

Résumé :

Dans ce manuscrit, nous présentons le développement d’un résonateur optimisé pour observer des effets quantiques du couplage entre un résonateur mécanique et le champ électromagnétique via la pression de radiation. Celui-ci doit combiner une réflectivité élevée, une faible masse, ainsi qu’un facteur de qualité mécanique élevé. Le résonateur consiste en une membrane suspendue de quelques centaines de nanomètres d’épaisseur, et de quelques dizaines de microns de côté, présentant une réflectivité importante grâce à l’utilisation de cristaux photoniques. Après une étude détaillée de la physique d’un cristal photonique en incidence normale, nous présentons les résultats expérimentaux, en bon accord avec des simulations optiques, notamment lorsque la membrane est utilisée comme miroir de fond d’une cavité Fabry-Perot. Dans un second point, nous passons en revue les mécanismes d’amortissement mécanique à l’œuvre dans les micro-résonateurs. Nous montrons ensuite comment l’introduction de contraintes peut améliorer leur facteur de qualité. Nous finissons la caractérisation mécanique par l’étude de non-linéarités apparaissant lors des grandes amplitudes de mouvement. Puis nous présentons le montage expérimental permettant l’observation du bruit thermique de ces résonateurs. Celui-ci a également permis d’obtenir des résultats préliminaires sur le refroidissement de leur bruit thermique par friction froide et par effet photothermique. Enfin, nous présentons le développement d’un système de couplage capacitif entre la membrane et un circuit électrique, constituant la première étape de la réalisation d’un transducteur optomécanique entre photons optiques et micro-ondes.

 


 

Leander Hohmann , le 24 février

Cette thèse a été effectuée au sein de l’équipe microcircuits à atomes du Laboratoire Kastler Brossel, sous la direction de Jakob Reichel et Jérôme Estève. Elle porte sur la « Création d’états intriqués à N atomes par dynamique Zénon quantique dans une cavité optique fibrée ».

Résumé :

Nous démontrons la création d’états intriqués dans un ensemble d’atomes neutres fondée sur la dynamique Zénon quantique (QZD), à l’aide d’un microrésonateur optique. Notre dispositif expérimental combine une puce à atomes avec une cavité Fabry-Perot fibrée (FFP) et nous permet de piéger un ensemble d’atomes de Rb87 dans un seul ventre d’un piège dipolaire créé dans la cavité. Les atomes sont couplés fortement et identiquement au mode lumineux de la cavité, ce qui permet une mesure non-destructive de leur état collectif. Nous réalisons la QZD en modifiant, par des mesures fréquentes, la dynamique induite par radiation micro-ondes. Nous démontrons que la QZD créé des états intriqués multiparticules de façon déterministe et rapide. Nous caractérisons ces états à l’aide de mesures de la fonction de Husimi Q, donnant accès à la partie symétrique de la matrice densité. Nous étudions l’évolution temporelle d’états impliquant un minimum de 3 à 11 atomes intriqués, qui présentent une fidélité par rapport à l’état W à 36 atomes atteignant 0.37. Nous étudions l’influence de la force de la mesure et des imperfections expérimentales et nous montrons que notre système est bien décrit par des modèles simples sans paramètres ajustables. Nous présentons aussi un travail réalisé en vue de l’amélioration des cavités FFP. Nous discutons notamment la limitation due à l’écart en fréquence des modes propres de polarisation dans des cavités formées par deux fibres optiques microfabriquées avec un laser CO2. Nous démontrons que cet effet dépend de la symétrie des structures microfabriquées et qu’il peut être contrôlé tant au niveau de la fabrication que pendant l’assemblage de la cavité.