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Abstract

Quantum thermodynamics is an area of research with important practical applications as well as funda-
mental ones. On the practical side, quantum thermal machines which may extract work from nanoscopic
differences in temperature may have an improved efficiency due to quantum effects. A particular example of
these machines are thermoelectrics, which are composed of a thermocouple joining two reservoirs of differ-
ent temperature and chemical potential.

Quantum effects can arise from intrinsic vibrational degrees of freedom found in the molecular junction.
Other effects may come from a coupling between thermocouples. The later case is here studied. We will
investigate the electronic transport going through two ideal electronic sites coupled with each other.

This will be done by investigating the steady-state effects, and by considering the open quantum dynamics
of the electronic sites only.

To do this we derive the effective Markovian equations for the dynamics of the system. We then will access
the first cumulants of the probability distribution function of the number of electrons through a thermo-
couple by establishing a counting process and studying its steady-state dynamics.
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1 Introduction

1.1 Motivations

Thermodynamics was — and still is — one of the great achievements of the physical sciences in the 19th

century: it abled the harnessing of heat, from which work could be extracted. This science ignited the in-

dustrial revolution and thus permitted the scientific revolution of the beginning of the 20th century, with

the advent of relativity and quantum mechanics. It cannot be doubted that the history of human progress

would have been greatly affected, for the worst, without Carnot, Claudius, and others.

Yet progress is far from over, in both a scientific sense, and a human one: indeed while the macroscopic

laws of heat are well known, its nanoscopic counter-parts aren’t. Quantum phenomena could enable greatly

improved ways to store heat and extract work from it, this would be of great benefit for society, in partic-

ular for its poorest members in developing and underdeveloped economies who are in dire need to extract

electricity cheaply and effectively.

Other applications might be nanoscale local refrigerators, thermal transistors, nanoscale radiation detec-

tors, and thermal logic gates[1]. Nanoscopic refrigerators might also provide an effective way to cool down

electrons in solid-state physics[2, 3]. However, there is also interest on the fundamental physics level, since

simple quantum machines are prime ground on which the interplay between quantum fluctuations and

thermal fluctuations play an important role[4].

We will focus here on quantum thermoelectrics, and the production of current from heat and chemical

potential differences.

1.2 Existing litterature

A thermoelectic device is an engine which converts differences of heat into work, or vice-versa. This is

done by connecting different reservoirs, at different temperatures and chemical potential together with a

thermocouple.

A thermocouple in its simplest form is nothing else than a junction connecting two macroscopic reservoirs

having different temperatures and chemical potentials. Then electrons can go from one reservoir to the other

through the junction. If the junction is smaller than the electron relaxation length, then quantum effects

become important[5], in particular, we can have the entire system be quantum mechanical, including the
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(a) A schematic representation of a thermocou-
ple on which electrons go through from left to
right (b) A macroscopic thermoelectric modulus

reservoirs. A very simple ideal toy model is to take the junction to be a single electronic site, in this case the

study is quite simple due to the presence of very few degrees of freedom.

However, real world thermoelectrics have a lot more going on: they have internal degrees of freedom as

well as more complicated couplings with the environment. Thus a lot of effort was made to understand

these effects on the energy production. As such a few examples are point contact quantum dots[6], metallic

wires[7], carbon nanotubes[8], etc.

1.3 Problem studied

It would seldom be the case in practical applications that a single thermoelectric would be placed some-

where and then be used in isolation. On the contrary, there would be quite a large number of them so that

the current produced would not be negligible.

We will study two thermoelectrics with a mechanical coupling. We will study if it assists or not the elec-

tronic transport.

1.4 Tools used

The main mathematical tools that will be used to study the system are:

1. We will study the open system dynamics of the junctions and the harmonic oscillator. We will thus

use the Lindblad quantum master equation which takes dissipation into account.
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2. We will assume the harmonic oscillator to have very fast dynamics so that it equilibrates rapidly. We

will thus adiabatically eliminate its degrees of freedom.

3. To study the flux of electrons through a junction we will use tools from the thermodynamics of trajec-

tories and large deviation theory to extract the relevant functions describing the number of electrons

going through a given junction in a given time interval.

2 Study of the system

2.1 Background Theory

A closed quantum system evolves unitarily according to the following equation:

ρ̇ = − i

~
[H, ρ] (1)

Withρ the density matrix, andH the system’s Hamiltonian. If H is of the formH0+H1+Hint, withH0 =

ε0â
†
0â0 the Hamiltonian of a small subsystem, H1 =

∑
i ε1,iâ

†
1,iâ1,i is the Hamiltonian of a macroscopic

reservoir and Hint =
∑

i γi(â
†
0â1,i + â0â

†
1,i) the coupling between the reservoir and the small subsystem,

we can try to describe the evolution of the subsystem only. To do this we can trace over the bath degrees

of freedom, and we obtain the dynamics of an open quantum system. The resulting evolution equation is

known as the Lindblad quantum master equation[9, 10]:

∂ρ

∂t
= − i

~
[H, ρ] + L ρ (2)

where L is the Lindbladian superoperator, and is of the form

L • =
∑
i

γi D [L̂i]• =
∑
i

γi

(
2 L̂i•L̂†i −

{
L̂†i L̂i, •

})
(3)

where i labels a channel through which our system is in contact with the environment, the L̂i are known

as Lindblad operators, the D [L̂i]• are known as dissipators, they describe the effect of dissipation on the

system. An important remark is that there is no imaginary unit in front of the Lindbladian superoperator.
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Going to the Heisenberg picture, the dissipative time evolution of an operator is given by:

˙̂OH = i[H, Ô] + L (H) ÔH (4)

L (H) ÔH =
∑
i

γi D
(H)[L̂i]ÔH =

∑
i

γi

(
2L̂†i ÔH L̂i −

{
L̂†i L̂i, ÔH

})
(5)

The Lindbladian has the following important properties:

1. It does not preserve unitarity

2. It is linear

3. It is trace preserving, that is, Tr {L ρ} = 0 and thus for all twe have: Tr {ρ(t)} = 1

4. It preserves the hermiticity of ρ̇

5. It is a completely positive mapping, that is, the eigenvalues of ρ do not change of sign

The first three properties can be easily checked, the fourth ad fifth must be the case since the eigenvalues

of ρmust be real and positive.

2.2 The System Studied

The system consists of two thermoelectrics and an harmonic oscilator coupled to both of them and to a

bosonic bath which will takes into account the natural dissipation of the oscillator. A thermoelectric consists

of a junction, here a single electronic site of energy εi, joining two macroscopic fermionic baths.

The full Hamiltonian is thus:

Hfull = H1 +H2 +HH.O. +Hc
1,2,H.O. +Hb +Hc

H.O.,b +
∑
l,s

(Hl,s +Hc
l,s) (6)

where the labels l and s denote the bath (left or right) and the electronic site respectively. And with:

H1 = ε1ŝ
†
1ŝ1 (7)
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(a) A schematic representation of the system
studied, with the electronic sites of energy εi
and the electronic reservoirs represented by the
fermi distribution for different couples {T, µ}

(b) the Fermi distribution f(ε, µ, T ) plotted
function of the energy ε, and with fixed chemi-
cal potentials µ, and temperature T

H2 = ε2ŝ
†
2ŝ2 (8)

HH.O. = ω

(
â†â+

1

2

)
(9)

Hc
1,2,H.O. = (Ω0 + Ω1x̂)

(
ŝ†1ŝ1 − ŝ†2ŝ1

)
(10)

Hb =
∑
i

εib̂
†
i b̂i (11)

Hc
H.O.,b =

√
γ

2

∑
i

(
b̂†i â+ b̂iâ

†
)

(12)

Hl,s =
∑
i

(
εl,s,iĉ

†
l,s,iĉl,s,i

)
(13)

Hc
l,s = Γl,s

∑
i

(
ĉ†l,s,iŝ+ ĉl,s,iŝ

†
)

(14)

H1 andH2 are the Hamiltonian of the electronic sites,HH.O. the Hamiltonian of the Harmonic Oscillator,

Hb the Hamiltonian of the bosonic bath, Hc
H.O.,b the intercation Hamiltonian between the Harmonic Os-

cillator and the bath, {Hl,s}l,s the Hamiltonians for the leads with l labelling the side (Right and Left), and

s labelling the site to which it is coupled, and finallyHc
l,s the coupling between the leads and the electronic

sites.

Of particular interest is the coupling between the harmonic oscillator and the electronic sites, the term

Ω0 + Ω1x̂ is justified by — in the small oscillations regime — being the expansion up to linear order of a
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more complicated functional Ω[x̂]. The second term in the hamiltonian corresponds to a phonon-assisted

coupling.

We are looking for an evolution equation of the following kind:

ρ̇ = −i [H1 +H2 +HH.O., ρ] + L b ρ+
∑
l,s

L l,s ρ (15)

And then we will eliminate the Harmonic Oscillator adiabatically so that we find an equation of the fol-

lowing kind:

ρ̇ = −i [Heff, ρ] + L eff ρ+
∑
l,s

L l,s ρ (16)

Since Heff only describes the closed dynamics of the system, and the lead Lindbladians {L l,s} only de-

scribe the coupling between the electronic sites and the leads, we expect all the interesting physics included

in the coupling Ω1x̂ to be encoded in the effective Lindbladian L eff.

We will now proceed to adiabatically eliminate the harmonic oscillator, to do this we will solve the steady

state dynamics of its creation and annihilation operators, then plug this solution into the evolution equation

of the electronic sites’ creation and annihilation operators. We then can identify the new dynamics with an

effective Hamiltonian. To take into account dissipation we will describe the bosonic bath coupled to the

harmonic oscillator by a Lindbladian, to which we will also plug the steady state creation and annihilation

operators to obtain an effective steady-state Lindbladian.

2.3 Adiabatic Elimination

Let us focus on the harmonic oscillator’s contribution to the dynamics of our system. First of all, the

bosonic bath contribution may be taken as a Lindbladian, and is of the form*:

L b • = γ
n̄

2
D [â]•+ γ

n̄+ 1

2
D [â†]• (17)

Where n̄ is the mean number of bosons in the bath.
*See Appendix A for details
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If we further take the harmonic oscillator to have a very fast relaxation, we can take it to be in steady-state:

0 = ˙̂as.s. = i[H, âs.s.] + L (H) âs.s. = −iωâs.s. −
iΩ1√

2

(
ŝ†1ŝ1 − ŝ†2ŝ2

)
− γ

2
âs.s. (18)

(19)

We thus find:

âs.s. =
−iΩ1√

2
(
iω + γ

2

) (ŝ†1ŝ1 − ŝ†2ŝ2

)
(20)

x̂s.s. =
1√
2

(
â+ â†

)
= − Ω

Ω1

(
ŝ†1ŝ1 − ŝ†2ŝ2

)
(21)

With: Ω =
ωΩ2

1

2ω2 + γ2

2

(22)

Let us look at the evolution equation for ŝi before taking the harmonic oscillator to be in steady-state:

˙̂s1 = i[H, ŝ1] + L (H) ŝ1 = −i (ε1 + Ω0 + Ω1x̂) ŝ1 (23)

˙̂s2 = i[H, ŝ2] + L (H) ŝ2 = −i (ε2 − Ω0 − Ω1x̂) ŝ2 (24)

Plugging x̂s.s. we find:

˙̂s1 = −i
(
ε1 + Ω0 − Ωŝ†2ŝ2

)
ŝ1 = i[Heff, ŝ1] (25)

˙̂s2 = −i
(
ε2 − Ω0 − Ωŝ†1ŝ1

)
ŝ2 = i[Heff, ŝ2] (26)

There is no term in ŝiŝi since the ŝi are fermionic annihilation operators and vanish when applied to

themselves.

We then get an effective Hamiltonian of the form:

Heff = (ε2 − Ω0) ŝ†2ŝ2 + (ε1 + Ω0) ŝ†1ŝ1 + Ωŝ†2ŝ2ŝ
†
1ŝ1 (27)

This Hamiltonian is diagonal in the Fock basis representation:
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Heff =


0 0 0 0

0 ε2 − Ω0 0 0

0 0 ε1 + Ω0 0

0 0 0 ε1 + ε2 + Ω

 (28)

We now still must take into account the steady-state dissipation through the Harmonic Oscillator to the

bosonic bath, for this we plug âs.s. and â†s.s. into (17), we find the following Lindbadian

L eff • =
Γ

2
D [ŝ†1ŝ1 − ŝ†2ŝ2]• (29)

With Γ = γ
(
n̄+ 1

2

)
Ω
ω

.

This effective Lindbladian does not mix diagonal elements of the density matrix, indeed we get:

L eff ρ =


0 −1

2
Γρ1,2 −1

2
Γρ1,3 0

−1
2
Γρ2,1 0 −2Γρ2,3 −1

2
Γρ2,4

−1
2
Γρ3,1 −2Γρ3,2 0 −1

2
Γρ3,4

0 −1
2
Γρ4,2 −1

2
Γρ4,3 0

 (30)

That is, this Lindbladian only makes most off-diagonal elements decay with a timescale inversely propor-

tional to Ω2
1.

2.4 Lead Lindbladians

We now turn derive the Lindbladians for the electronic leads:

L l,s • = Γ2
l,sgl,s

(
fl,s D [ŝ†s]•+ (1− fl,s) D [ŝs]•

)
(31)

The derivation is analogous to the one for (17) which is found in the appendix, and can also be found in

[9, 10].

Here the Lindbladians describe two dissipation channels: one where electrons are coming in the electronic
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site, and one where electrons are going out (or alternatively, where holes are coming in), and where fl,s =

f (εs ± Ω0 − µl,s) is the Fermi-Dirac distribution, and gl,s is the degeneracy of our lead.

There are two important remarks:

1. Ω does not appear in these Lindbladians, only the shift Ω0 does

2. the diagonal elements do not vanish, they mix together

2.5 Thermodynamic of Trajectories and Large Deviation Theory

2.5.1 principle

As a system evolves through time, it will visit in a certain order a given number of states, this is a trajectory

in the state-space of the system. In some cases, this trajectory is fully deterministic, in the case of open sys-

tems, or when a measure occurs in the system, there is an element of randomness introduced, we can then

talk not only about the particular realisation of a trajectory, but about all possible trajectories in this space.

The idea of thermodynamic of trajectories[11] is to use Large Deviation Theory to study this ensemble of

trajectories. This is done by biasing each trajectory by a weight function of a bias parameter s, in practice,

this is nothing more than a Laplace Transform on each trajectory. Doing this we can then access the large de-

viation function θ(s), which gives us the entire dynamics of the system dynamical phase transitions, marked

by non-analyticities in θ(s), if any.

2.5.2 Counting electrons

We wish to study the flow of electrons through a given site. This can be done by looking at its counting

statistics. Where by counting statistics it is meant the knowledge of all cumulants of the probability distribu-

tion function of counting a given number of electrons in a given time interval. The relation between the flow

of electrons and its counting statistics is straightforward: the first cumulant — the mean — is the current, the

second cumulant its variance, and so on.

Let PK be a projector onto the subspace where K electrons went through a given channel between a

time interval [0, t]. Then pK = Tr{PK ρ} is the probability of countingK electrons from 0 to t.

We define the cumulant generating function as the Laplace transform of pK : Z(s, t) =
∑
K

e−sKpK =

Tr{ρs}with ρs =
∑
K

e−sK PK ρ the biased density matrix.
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We know from Large Deviation Theory that:

Z(s, t) ∼
t�1

etθ(s) (32)

And we can access the full counting statistics if we can find θ(s), since:

κn = (−1)n∂ns θ(s) (33)

We recall that the two first cumulants are:

κ1 = 〈K〉 (34)

κ2 = 〈K2〉 − 〈K〉2 (35)

2.5.3 Accessing the full counting statistics

The interest of the following method is that we do not need to know the exact probability distribution

function: we can directly access the cumulants up to any order.

We know that, in the very big t limit we have:

∂tθ = ∂t
1

t
lnZ(s, t) = − 1

t2
lnZ(s, t) +

1

t
∂t lnZ(s, t) ∼

t�1

1

t
∂t lnZ(s, t) =

1

t

Tr {ρ̇s}
Tr {ρs}

(36)

The equation of motion for the biased density is[10]:

ρ̇s = −i [H, ρs] + L ρs + L s ρs (37)

L s • =
∑
j

γj
(
e−s − 1

)
L̂j • L̂†j (38)

where L s is the contribution from counting the electrons leaving a given site, biased by a factor (e−s − 1).

The operators L̂j select the subspace where a counting has occurred, they are usually annihilation and cre-

ation operators, or some combination thereof.
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where the sum is over the channels where we are counting the electrons, from now on, and for simplicity’s

sake, we will assume there is only one channel where we are counting the electrons. We thus have:

θ(s) = lim
t→∞

1

t

∫ t

0

Tr {L s ρs}
Tr {ρs}

(39)

To simplify our notation, and to normalise ρs we do the following substitution: ρs
Tr{ρs} → ρs*, and we can

thus write:

θ(s) = lim
t→∞

1

t

∫ t

0

d t′Tr {L s ρs} = γi
(
e−s − 1

)
lim
t→∞

1

t

∫ t

0

d t′Tr
{
L̂†i L̂iρs

}
(40)

From (33) we can write down the first two cumulants[12]:

κ1 = γi lim
t→∞

1

t

∫ t

0

d t′Tr
{
L̂†i L̂iρ

}
(41)

κ2 = κ1 − 2γi lim
t→∞

1

t

∫ t

0

d t′Tr
{
L̂†i L̂iρ

′
}

(42)

Let us investigate the form of ρ′ = ∂sρs|s=0.

∂sρs|s=0 = −

∑
K

Ke−sK PK ρ

Tr

{∑
K

e−sK PK ρ

}
∣∣∣∣∣∣∣∣
s=0

−

∑
K

e−sK PK ρ

Tr

{∑
K

e−sK PK ρ

}2 Tr

{
−
∑
K

Ke−sK PK ρ

}∣∣∣∣∣∣∣∣∣
s=0

=

−
∑
K

KPK ρ

Tr

{∑
K

PK ρ

} −
∑
K

PK ρ

Tr

{∑
K

PK ρ

}2 Tr

{
−
∑
K

KPK ρ

}

Since Tr

{∑
K

PK ρ

}
is unity we find:

ρ′ =
∑
K

K
(
pK −PK

)
ρ (43)

*This normalised biased density matrix has the following equation of motion: ρ̇s = −i [H, ρs] + L ρs + L s ρs −
ρs Tr {L s ρs}
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Which we can clearly see that has a vanishing trace.

The evolution equation for ρ′ is:

ρ̇′ = −i [H, ρ′] + L ρ′ − γiL̂iρL̂†i + γiρTr
{
L̂†i L̂iρ

}
(44)

If the density matrix is in steady-state ρ = ρs.s. we get a simple expression for θ and the cumulants:

θs.s.(s) = γi
(
e−s − 1

)
Tr
{
L̂†i L̂iρ

s.s.
s

}
(45)

κs.s.
1 = γi Tr

{
L̂†i L̂iρ

s.s.
}

(46)

κs.s.
2 = κs.s.

1 − 2γi Tr
{
L̂†i L̂iρ

′s.s.
}

(47)

To find κs.s.
2 we need to solve the evolution equation for ρ′:

0 = −i [H, ρ′s.s.] + L ρ′s.s. − γiL̂iρs.s.L̂†i + γiρ
s.s. Tr

{
L̂†i L̂iρ

s.s.
}

(48)

2.5.4 First and second cumulants for our system

We want to differentiate electrons coming in from electrons coming out, this is easy to do since their rate

γi are different. We take the convention of a positive current being a flow from left to right. Let Ml,s be a

mapping taking this into account:

Ml,s(•) = Γ2
l,sgl,s

(
fl,s Tr

{
ŝsŝ
†
s•
}
− (1− fl,s) Tr

{
ŝ†sŝs•

})
(49)

We then get:

κs.s.
1 s = M1,s(ρ

s.s.)−M2,s(ρ
s.s.) (50)

κs.s.
2 s = κs.s.

1 s − 2 (M1,s(ρ
′s.s.)−M2,s(ρ

′s.s.)) (51)
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where κs.s.
1 s is the steady-state electron current through site s ∈ {1, 2}, while κs.s.

2 s is the variance of the

current. We define the Fano factor as:

F =
κs.s.

2 s

κs.s.
1 s

= 1− 2
M1,s(ρ

′s.s.)−M2,s(ρ
′s.s.)

M1,s(ρs.s.)−M2,s(ρs.s.)
(52)

The Fano factor is associated with bunching, that is, the tendency to observe a joint detection of fermions

or bosons by two distinct detectors. If F = 1 then the the probability distribution function is Poissonian,

ifF < 1 then it is sub-Poissonian which is associated with anti-bunching, that is no joint detection, while if

F > 1 it is super-Poissonian and bunching increases.

Let us computeMl,s(ρ
s.s.) for s ∈ {1, 2}:

Ml,1(ρs.s.) = Γ2
l,1gl,1

(
fl,1
(
ρs.s.

1,1 + ρs.s.
2,2

)
+ (1− fl,1)

(
ρs.s.

3,3 + ρs.s.
4,4

))
(53)

Ml,2(ρs.s.) = Γ2
l,2gl,2

(
fl,2
(
ρs.s.

1,1 + ρs.s.
3,3

)
+ (1− fl,2)

(
ρs.s.

2,2 + ρs.s.
4,4

))
(54)

We can easily access the above two quantities by solving the equation of motion for the steady-state density

matrix. We must only concern ourselves with the diagonal elements of ρ′ since in Ml,s, the operators ŝsŝ†s
and ŝ†sŝs are themselves diagonal.

2.6 A Few Results

Unfortunately, there is no actual difference with the single uncoupled electronic site case, indeed, the

phonon-assisted (Ω1) coupling only affects the off-diagonal elements of the density matrix, which do not

impact the electron transfer. While the normal (Ω0) only shifts the energy of the electronic sites in different

directions: we only get two uncouplled electronic sites with different energy levels.

In the above figure we have plotted the current through sites 1 and 2 as a function of the coupling strength

Ω0 for different values of the temperature and chemical potential of the left and right leads Tl,s and µl,s, and

setting Γl,s and gl,s to unity. The different cases are:

A: The current through the first electronic site, with a higher chemical potential and temperature on the

left lead than on the right lead (µL,1 = 3.1 > µR,1 = 2.9 and TL,1 = 2 > TR,1 = 1)
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Figure 3: Current in function of the coupling Ω0

B: Current through the second electronic site with the same configuration as above.

C: As in the case A but without difference in chemical potential

D: As above but in the second site

E: As in the case A but without difference in temperature

F: As above but in the second site

The difference between the firts and second electronic site is that the shift in energy occurs with different

signs, indeed: ε1 → ε1 + Ω0 and ε2 → ε2 − Ω0. In the case without temperature difference and without

chemical potential difference the current is zero through both sites for all values of the coupling.

In all cases the current tends to zero as Ω0 goes to∞.

3 new proposed model

The results from this section are fresh and the physical interpretation is not completely fleshed out by the

time of this report being written.

We propose a second model which may be able to recover interesting phenomena:

Let the coupling between both electronic sites be a little bit different:Hc
1,2,H.O. = (Ω0 + Ω1x̂)

(
ŝ†1 + ŝ1 − ŝ†2 − ŝ1

)
.

This gives us a few differences:

âs.s. =
−iΩ1√

2
(
iω + γ

2

) (ŝ†1 + ŝ1 − ŝ†2 − ŝ2

)
(55)
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x̂s.s. =
1√
2

(
â+ â†

)
= − Ω

Ω1

(
ŝ†1 + ŝ1 − ŝ†2 − ŝ2

)
(56)

(57)

With Ω =
ωΩ2

1

2ω2+ γ2

2

the same one as in the first model.

For convenience’s sake we will write ŝ†i + ŝi = ξ̂i, we now write the evolution equation for the ŝi (for a

steady harmonic oscillator):

˙̂s1 = −iε1ŝ1 + i
(

Ω0 + Ω
(

1 + ξ̂2

))
ŝz1 (58)

˙̂s2 = −iε2ŝ2 + i
(
−Ω0 + Ω

(
1 + ξ̂1

))
ŝz2 (59)

With sz =
[
ŝ†, ŝ

]
and is such that sz|0〉 = −|0〉 and sz|1〉 = |1〉. The new effective Hamiltonian is:

Heff = ε1ŝ
†
1ŝ1 + ε2ŝ

†
2ŝ2 − (Ω + Ω0) ξ̂1 − (Ω− Ω0) ξ̂2 − Ωξ̂2ξ̂1 (60)

This Hamiltonian is not diagonal, indeed:

Heff =


0 Ω0 − Ω −Ω0 − Ω −Ω

Ω0 − Ω ε2 Ω0 − 2Ω −Ω0 − Ω

−Ω0 − Ω Ω0 − 2Ω ε1 Ω0 − Ω

−Ω −Ω0 − Ω Ω0 − Ω ε1 + ε2

 (61)

The new Lindbladian for the dissipation of the harmonic oscillator is:

L eff = γ

(
n̄+

1

2

)
Ω

ω
D [ξ̂1 − ξ̂2] (62)

In this new model one cannot neglect non diagonal elements of the density matrix since both the com-

mutator [H, ρ] and L eff ρmix the diagonal elements with non diagonal elements: For the commutator the

diagonal elements are the imaginary parts of a few off-diagonal elements, while for the lindbladian they are

a mix of diagonal elements of the density matrix, and of the real parts of a few off-diagonal elements.
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We also remark that for Ω1 = 0 we have that Ω = 0, and since it is in front of the dissipator, we have no

dissipation! thus only the phonon-assisted coupling has dissipative effects.

We expect all interesting effects to be encoded in the effective Lindbladian, since the effects of the commu-

tator alone should not create a current, since it describes the closed dynamics of the system, and the effects of

the lindbladian of the lead should just encode the effects of the current through one electronic site, without

taking into account the other. Moreover since the current is only concerned with the diagonal elements of

the density matrix, the only relevant elements of it are those that contribute to the dissipative (driven by

L eff) evolution of the diagonal elements. These elements are {ρ1,1, ρ2,2, ρ3,3, ρ4,4, ρ1,4, ρ2,3, ρ3,2, ρ4,1}. To

simplify the system we can set up all other elements in the density matrix to be equal to zero.

In the same vain, we see that Ω0 is only in the Hamiltonian, moreover, it is not present in the diagonal

elements of it. We can thus set it to zero.

(a) The current on the uppermost electronic
site with ε1 = ε2 = 3, µL,1 = 3.1, µR,1 =
2.9, µL,2 = 3.1, µR,2 = 2.9, TL,1 = 2,
TR,1 = 1, TL,2 = 2, TR,2 = 1

(b) The current on the uppermost electronic
site with ε1 = ε2 = 3, µL,1 = 3.1 ,µR,1 =
2.9, µL,2 = 3.1, µR,2 = 2.9, TL,1 = 2,
TR,1 = 1, TL,2 = 1, TR,2 = 2

(a) The current on the uppermost electronic
site with ε1 = 3, ε2 = 2.9, µL,1 = 3.1
,µR,1 = 2.9, µL,2 = 3.1, µR,2 = 2.9, TL,1 =
2, TR,1 = 1, TL,2 = 1, TR,2 = 2

(b) The current on the uppermost electronic
site with ε1 = 2.9, ε2 = 3.1, µL,1 = 3.1
,µR,1 = 2.9, µL,2 = 3.1, µR,2 = 2.9, TL,1 =
2, TR,1 = 1, TL,2 = 1, TR,2 = 2

We can see that the current is significantly altered by the presence of the coupling. The coupling can lead

to both a significant improvement of the intensity of the current, or its damping. However, we see that there
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is a divergence always at the same intensity of the coupling at around 0.45, this seems to be a problem with

the code.

4 Conclusion

4.1 Summary of Internship Achievements

The goal of this internship was to see if quantum effects coming from a mechanical coupling between

two thermoelectric devices increased the efficiency of these thermal machines. We showed that the minimal

model we first used was not able to recover the interesting physical phenomena after an adiabatic elimination

of the Harmonic Oscillator. W find ourselves forced to consider more complicated models.

Is it surprising to have this result? Not that much, indeed, from the start the interaction hamiltonian is

HH.O.,1,2 = (Ω0 + Ω1x̂) ·
(
ŝ†1ŝ1 − ŝ†2ŝ2

)
is such that the normal (non-phonon assisted) coupling is just a

shift in the energies. The adiabatic elimination just deleted the second part of the interaction, which was the

interesting one. However, we may have effects on higher order cumulants, or when driving adiabatically the

oscillator.

Why do we think the second model resolves this problem ? The first effective Lindbladian L eff does not

mix the element of the density matrix, and thus does not really affect it qualitatively. The second model does

this, mixing all elements of the density matrix into a huge mess. An important drawback of this model is

that the number of electrons is not conserved, that is, electrons can be created or annihilated without them

hopping to one of the reservoirs thanks to the term ŝ†1 + ŝ1 − ŝ†2 − ŝ1.

A more realistic model would be to couple the Harmonic Oscillator to the leads:

HH.O.,1,2,leads = (Ω0 + Ω1x̂)

·

(
ŝ†1
∑
i

(ĉL,1,i + ĉR,1,i) + ŝ1

∑
i

(
ĉ†L,1,i + ĉ†R,1,i

)
−ŝ†2

∑
i

(ĉL,2,i + ĉR,2,i)− ŝ2

∑
i

(
ĉ†L,2,i + ĉ†R,2,i

)) (63)

So that the electrons are not created out of nowhere, but come from one of the reservoirs and vice versa.

This model is more complex since the effect will be found on both L eff — which will have a dissipator func-
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tion of the sum and difference of the ŝ†sĉl,s,i and the ŝsĉ†l,s,i — and the {L l,s} of the leads in a more complex

manner.

4.2 Future Work

The internship work can be readily extended, first of all, we must finish the analysis of the second model

more thoroughly, that is, finding its first few cumulants for the electron flux through the sites. Second of all

would be to add more electronic sites in series and in parallel to see how they all affect each other. Another

extension could be to add more structure to the electronic sites, it might be done by giving them vibrational

degrees of freedom, or by taking them to be one dimensional lattices with electrons hopping from left to

right on which the coupling with the harmonic oscillator might act. In all of these extensions the density

matrix increases dramatically, making the density matrix representation more cumbersome, and thus making

progress slower and more computationally intensive. This internship was mostly analytical, future work

cannot be expected to be of this kind.
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A Derivation of the Lindbladians

The following derivation is mostly borrowed from H. Carmichal’s An Open Systems Approach to Quan-

tum Optics[9] and C. Gardiner’s Quantum Noise[10]

A.1 Interaction Picture

Let the Hamiltonian be Ĥ = Ĥ0 +Ĥ1 +Ĥint, where 0 labels the system, and 1 an external bath. One goes

to the interaction picture by doing the following transformation on all operators of the systems (including

the density matrix and the Hamiltonian): Ô → Õ = Û †0,1 Ô Û0,1 with Û0,1 = e−i(Ĥ0+Ĥ1)t. The equation

of motion becomes in this picture:

˙̃ρ(t) = −i
[
H̃int(t), ρ̃(t)

]
(64)

The solution is, formally:

ρ̃(t) = ρ(0)− i

∫ t

0

d t′
[
H̃int(t

′), ρ̃(t′)
]

(65)

Inserting it in (64), and then tracing over the bath degrees of freedom we get:

˙̃ρ0 = −
∫ t

0

d t′Tr1

{[
H̃int(t),

[
H̃int(t

′), ρ̃(t′)
]]}

With ∂t Tr1 {ρ̃} = ˙̃ρ0

A.2 Derivation of the Lindbladians

The Born-Markov Approximation states that the evolution only depends on the state of the system at

time t, and that the system and the bath are uncorrelated, that is the above equation reads:

˙̃ρ0 = −
∫ t

0

d t′Tr1

{[
H̃int(t),

[
H̃int(t

′), ρ̃0(t)⊗ ρ̃1(0)
]]}

(66)

We will write the interaction hamiltonian as: H̃int =
√

γ
2

(
s̃†b̃+ s̃b̃†

)
with s̃ and b̃ interaction picture

operators for the system and the bath respectively. Then expanding equation (66) by plugging the previous

expression for H̃int, and by writing Tr1 {•ρ̃(0)} = 〈•〉1 we get:
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˙̃ρ0= −γ
∫ t

0

d t′
{(
s̃†(t)s̃†(t′)ρ̃0(t)−s̃†(t′)ρ̃0(t)s̃†(t)

)〈
b̃(t)b̃(t′)

〉
1

+(s̃(t)s̃(t′)ρ̃0(t)−s̃(t′)ρ̃0(t)s̃(t))
〈
b̃†(t)b̃†(t′)

〉
1

+
(
s̃(t)s̃†(t′)ρ̃0(t)−s̃†(t′)ρ̃0(t)s̃(t)

)〈
b̃†(t)b̃(t′)

〉
1
+
(
s̃†(t)s̃(t′)ρ̃0(t)−s̃(t′)ρ̃0(t)s̃†(t)

)〈
b̃(t)b̃†(t′)

〉
1

+h.c.
}

(67)

To go further we must look more specifically at the operators s̃ and b̃. First of all, the b̃ operators are

annihilation operators, when taking the trace they destroy a level on the right, while they create one on the

left, thus
〈
b̃(t)b̃(t′)

〉
1

=
〈
b̃†(t)b̃†(t′)

〉
1

= 0, from the remaining terms we can already recognise the

Lindbladian structure! Let us look at what the interaction picture does to the system and bath operators in

the case of the Harmonic oscillator.

s̃(t) = ã(t) = eiH0tâe−iH0t = ei(ωâ†â)tâe−i(ωâ†â)t = âe−iωt (68)

b̃(t) =
∑
i

b̃i(t) =
∑
i

e
i
∑
j
εj b̂

†
j b̂jt

b̂ie
−i

∑
j
εj b̂

†
j b̂jt

=
∑
i

b̂ie
−iεit (69)

We can thus write:

˙̃ρ0(t) = −γ
∫ t

0

{(
ââ†ρ̃0(t)− â†ρ̃0(t)â

)∑
i

ei(εi−ω)(t−t′)n̄(εi, T )

+
(
â†âρ̃0(t)− âρ̃0(t)â†

)∑
i

e−i(εi−ω)(t−t′)(n̄(εi, T ) + 1) + h.c
} (70)

Assuming* the following we recover the Lindbladian (17):∑
i

ei(εi−ω)(t−t′) ∼
∫
δ(ε− ω)δ(t− t′) d ε

Indeed we get:

˙̃ρ0(t) =
1

2
γn̄ (ω, T )

(
2âρâ† −

{
â†â, ρ

})
+

1

2
γ (n̄ (ω, T ) + 1)

(
2â†ρâ−

{
ââ†, ρ

}) (71)

However, we recover it for ρ̃0, not for ρ0, to truly recover the equation of motion, let us go back to the

one for the full system:

ρ̇ = −i [H0 +H1 +Hint, ρ] (72)

Tr1 ρ̇ = ρ̇0 = −i [H0, ρ0]− i Tr1 {[Hint, ρ]} (73)

*The sources cited do not proceed as follow, but argue it differently and more thouroughly.
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Where the evolution driven by the bath vanishes due to the Markov Approximation where the bath is in

steady state and uncorrelated with the system.

−i Tr1 {[Hint, ρ]} = −i Tr1

{
Û0,1Û

†
0,1HintÛ0,1Û

†
0,1ρÛ0,1Û

†
0,1 − Û0,1Û

†
0,1ρÛ0,1Û

†
0,1HintÛ0,1Û

†
0,1

}
(74)

−i Tr1 {[Hint, ρ]} = Û0 Tr1

{
−i
[
H̃int(t

′), ρ̃(t′)
]}

Û †0 = Û0
˙̃ρ0(t)Û †0 (75)

Plugging the Lindbladian coming from (69) yields a Lindbladian not in the interaction picture, and thus

ρ̇0 = −i [H0, ρ0] + L ρ0, which was the desired result. The exact same procedure is followed to obtain the

Lindbladians for the leads, however it is a more tedious one since we have to keep track of each lead, and the

Hamiltonians are less straightforward.
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