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Abstract
Quantum turbulence is a complex phenomenon observed in quantum fluids and difficult to

study experimentally because of the high instability of these systems. This problem does not
exists in quantum fluids of light which also benefits from a large toolbox for quantum detection.
Many theoretical works like [1], [2] have been carried out on turbulence in quantum fluids of light
but none about experimental results in hot atomic vapours.
My project focuses on this experimental realization and study complex hydrodynamic phenomena
using the quantum fluids of light platform.
Specifically, I focus on the evolution of the interference generated by two counter-streaming laser
beams in a hot atomic vapor. Under specific conditions the photons will behave like a fluid of light
[3] and will follow the same dynamics as an atomic Bose-Einstein condensates.
The idea is that we can observe the same phenomena as in classical hydrodynamics thanks to this
platform, i.e. cascading generations of vortex pairs [4] causing instabilities in the system.
This work provides a natural route towards the experimental investigation of quantum turbulence,
instabilities, and out-of-equilibrium dynamics in superfluids of light.
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1 Introduction
Hydrodynamic phenomena are today difficult to model and their behaviour and evolution are open
questions [5]. This is the case of turbulence, the study of which began in the 15th century with
the works of Leonardo da Vinci. Since then, a lot of work has been done on this subject and mod-
els have been developed to explain it, such as the turbulent cascade governed by Kolmogorov’s laws [4].

For the past few decades, research on quantum fluids like atomic Bose-Einstein condensates [6],
which are composed of bosons all in a macroscopic quantum state, has been greatly developed. They
have shown their usefulness in simulating hydrodynamic phenomena [7] but the problem is that it is
difficult to make measurements on it without breaking the quantum state of the system.

A new community has recently emerged working on quantum fluids of light, optical systems where
light behaves like a fluid according to hydrodynamic laws [8]. Fluids of light are a good platform
because of their high tunability and repeatability compared to the Bose-Einstein condensates which
requires a very large installation and is very unstable. Moreover, there are already many quantum
optical detection tools with high efficiency which is not the case for atoms.

In specific media and conditions, light propagating in the paraxial approximations can be described
as a fluid of light. In this case, the photons interact with each other and behave like massive bosons.
The dynamic of the system is described by the non-linear Schrödinger equation which is analogous to
the Gross-Pitaevskii equation used to describe quantum fluids such as the Bose-Einstein condensate
[8]. Quantum fluids of light are therefore good candidates for quantum simulation because hydrody-
namic phenomena such as blast waves [9], solitons [10] and turbulence [1] are possible in these systems.

In this work, I focus on the experimental realisation of the turbulence produced by two counter-
streaming fluids of light. In addition, we study the evolution of inteferences, especially instabilities and
turbulence during the propagation of the fluids. The results are also compared with the theoretical
predictions [1] by studying turbulence in the momentum distribution. In parallel, we observed vortices
generated within them and their characterisation by reconstructing the phase of the electric field.
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2 Photon fluid in the 2D+1 propagating geometry
In classical optics, photons do not interact with each other. However, in the non-linear case, photons
can acquire an effective mass and begin to "see" each other. In this case, the evolution followed by the
light is the same as that of quantum fluids such as an atomic Bose-Einstein condensates.
Thanks to these systems, it is possible to study many classical hydrodynamic phenomena only with
photons and a non-linear medium.

2.1 Non-linear Schrödinger equation in optics
2.1.1 Propagation equation in a non-linear medium

In a non-linear Kerr-type medium the evolution equation of the electric field E is given by:

∇2E− 1
c2
∂2E
∂t2

= 1
ε0c2

∂2P
∂t2

, (1)

where c is the speed of light, ε0 is the dielectric permitivity in vacum and P is the polarisation of the
medium. In the case of a non-linear medium, the polarisation P is written:

P(r, t) = ε0χ
(1)E(r, t)︸ ︷︷ ︸
PL(r,t)

+ ε0χ
(2)E2(r, t) + ε0χ

(3)E3(r, t) + ...︸ ︷︷ ︸
PNL(r,t)

(2)

Susceptibilities χ(n) are tensors of ranks n + 1 (n ∈ N). The system is an isotropic, homogeneous,
centro-symetric atomic gas, thus all the even-order χ(2n) vanish [11]. In addition, the higher order are
neglected and we stop at n = 3.
For a monocromatic laser field E(r, t) = 1

2
(
E0(r)eiωt + cc.

)
we can rewrite (1):

∇2E0(r) + k2
0εr(ω)E0(r) = −1

2
ω2

c2
χ(3)(ω)|E0(r)|2E0(r), (3)

with εr(ω) = 1 + χ(1)(ω) is the permitivity of the medium and k0 is the laser wave-vector in vacuum.
We define the linear index n0(ω) =

√
Re(εr(ω)) and the absorption coefficient α(ω) = k0

Im(εr(ω))
n0

.

2.1.2 Approximations

Field propagation is limited for small angles near the optical axis (z-axis in our case) along which
the beam propagates. In this case, the amplitude of the field varies slowly in the transverse plane
(perpendicular to z) and the so-called paraxial approximation can be achieved. The field envelope is:

E0(r⊥, z) = E0(r⊥, z)eik(ω)z, (4)

where the amplitude is a slowly-varying function. r⊥ is the spatial coordinate in the transervse plane.
In this approximation, without an external potential and losses, the propagation equation of the field
in a non-linear medium Kerr-type is:

i
∂E(r⊥, z)

∂z
=
(
− 1

2k0
∇2
⊥ + g|E(r⊥, z)|2

)
E(r⊥, z), (5)

with g = −k0n2 is the intercation term with n2 = χ(3)/(2cn2
0ε0) the non-linear index. We define

∆n = n2|E|2 as the non-linear refractive index of the medium. It acts as an attractive or repulsive po-
tential, depending on its sign. In the experiments we work in the repulsive regime for the stability. We
avoid going into the attractive regime because the beam will self-focus very quickly and we will recover
a beam cut into filaments [12]. (5) equation is also called the Non-linear Schrodinger Equation (NLSE).
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2.1.3 Comparison to the Gross-Pitaevskii equation

We can establish a rigourous isomorphism to the Gross-Pitaevskii equation (GPE). For massive bosons
in a trapping potential V, the evolution time of a wave function Ψ is given by:

i~
∂Ψ(r, t)
∂t

=
(
− ~2

2m∇2 + V(r) + g|Ψ(r, t)|2
)

Ψ(r, t), (6)

m is the bosonic mass and g the interaction parameter between bosons.

Space-time mapping: The main difference between equations (5) and (6) is that the GPE describes
the evolution of the system along the real physical time, whereas the NLSE describes the space propa-
gation. The idea, here, is that the z-direction plays the role of an effective time τ in the NLSE so that
each transverse plane along the optical z-axis can be considered as a snapshot of the non-linear "time
evolution" of the laser beam inside the medium. For each transverse plane, we define τ = zn0/c.

Figure 1: Propagation of a laser field along a non-linear medium like it is presented in [13]. For each
transverse plane we take a time snapshot.

Finally, we can conclude from this that the NLSE describes the same physical situation as 2D
Bose-Einstein condensates.

2.2 Hydrodynamic analogy
The NLSE can be mapped onto an hydrodynamic formulation by prescribing E = √ρeiφ with the fluid
density ρ = |E|2 (light intensity) and v = (c∇⊥φ)/k0 = (ck⊥)/k0 the velocity field. By using this
transformation, also called the Madelung’s transformation [14], in the NLSE we can show that these
quantities satisfy the hydrodynamic equations:{

∂ρ
∂z + ∇⊥ · (ρv) = 0,
∂v
∂z + (v ·∇⊥)v = − g

k0
∇⊥ρ+ 1

2∇⊥
(

1√
ρ∇2
⊥
√
ρ
)
.

(7)

The first equation refers to the continuity equation. The second one is Euler equation. The last term
in the second equation refers to the quantum pressure which is neglected in our experiments. With
these equations we can now understand why the field, in a non-linear Kerr-type medium, can be called
a quantum fluid of light.
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3 Atomic medium characterization
We need a non-linear medium and a laser beam to have a fluid of light. Here I will focus on the
medium and its characterization.

3.1 Tools
3.1.1 Rubidium cells

For all experiments, we used a Rubidium (Rb) atomic vapor. The main reason for using an alkali
specie rather than other atoms is that it has an atomic transition in the near infrared, close to the
wavelengths of the lasers, where the 2-level model is well suited.
The atomic structure of the Rb is also well known and it is developed in Q. Fontaine’s thesis [3] from
which this Fig.2 is extracted.

Figure 2: 85Rb (left) and 87Rb (right) D-line hyperfine structure.

The Rb vapor is contained in a cylindar glass cell, closed on both sides by 1 mm thick anti-reflective
coated windows at 780 and 795 nm suited for the lasesr wavelengths.

Figure 3: Picture of our cell containing the medium.
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At room temperature Rb is solid so we wrap a resistance around the cell, as shown Fig.3, to heat
the medium and have a homogenous atomic gases. Also by increasing the temperature, we increase
the vapor pressure Pv and the atomic density N as shown Fig.17 from [3]. This is one of the knob we
use to control the non-linearity of the medium because the susceptibilities χ(3) depends on the atomic
density [15]. For the experiment we work for temperatures between 100 and 150 ◦C. Below this level
the non-linearity is too weak, above it is too strong and other undesirable phenomena come into play.

Figure 4: Vapor pressure (a) and atomic density (b) as function of temperature. The melting point of
Rubidium is 39.31 ◦C. This is extracted from [3].

3.1.2 Laser

During the experiments we used a Muquans fiber laser bringing the laser beam directly through an
optical fiber to our optical table.
Its wavelength is λ0 = 780.240 nm (frequency is ν0 = 384.229 Thz).
We define the detuning ∆ = ν − ν0. ∆ = 0 corresponds to the D2 transition of 85Rb, shown Fig.2,
starting from F=3 to F’=2.
We can control the detuning by using a function generator which allows us to have values of the latter
over 10 GHz (−5 GHz < ∆ < 5 GHz). This function generator is linked to the laser and allow us
to control the frequency by modulating the laser diode current (expliquer). Another possibility is to
change directly the temperature of the diode. For other lasers like cavity lasers we can change the
length of the cavity.
At the output of the optical fiber power is 1 W.

3.2 Temperature measurement
3.2.1 Transmission measurement

With a resistance we heat the medium but we don’t know what is the precise value of the temperature
of the gaz inside the cell. To measure its we record the transmission of the laser beam after it passage
in the Rb cell while applying a frequency scan of 10 GHz. By changing the frequency, the beam is
more or less absorbed depending on whether it is at a resonant frequency or not.
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The data are shown Fig.5 and compared with the theory given by the fitted curve, based on the model
from [16], which gives the temperature value. For the rubidium cell used here, the temperature value
was 105.6 ◦C.

Figure 5: Temperature measurement with the mixed Rb cell 99% 85Rb, 1% 87Rb. The dashed curve
is the fit. The red curve is from the experimental data. For these data P = 1 mW.

3.3 Frequency measurement
3.3.1 Saturated absorption Spectrocopy

In the expreriment, we work in the repulsive interaction regime which means that the interaction term
has to be negative. So we detune the laser to negative value ∆ < 0.
We need to know the exact value of the detuning. To measure it we use a saturated absorption setup in
addition to the experimental setup explained in section 4.2. Here, the difference with the temperature
measurement is that we measure transmission on a photodiode the beam after his second passage in
the Rb cell as shown Fig.6. This method allow us to minimise the Doppler effect because we only excite

Figure 6: Saturated absorption setup.

atoms in the zero velocity class. This also allows us to distinguish resonances due to dipole-diplole
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interactions [17].
By looking at the spectrum (Fig.7) and by knowing the frequency ramp and taking 2 points on the
spectrum we can know the value of the laser frequency.
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Figure 7: Saturated Absorption Spectrum of the Rubidium (87 and 85) D2 line. For these data
T = 105◦C and P = 10 mW.

3.4 Non-linear refractive index measurement
An important parameter that we need to calibrate the system is the non-linear refractive index of the
medium ∆n that we define earlier in section 2.1.2.
There are severals methods to measure it like the far field method well explained in Q. Fontaine thesis
and baser on [18]. Here I will present another method which is easy to apply and quite well developed
now as it is widely used by the team members.

3.4.1 Interferometric method

The beam (close to the resonance ∆ = −2 GHz, called pump) passing through (shéma) the non-linear
medium is made to interfere with a reference beam having a tilted angle in relation to the pump. Then,
with a camera, which is imaging the output of the Rb cell, we oserve the fringes like on Fig.8.

As we can see, by increasing the power we observe two phenomena: (i) an enlargement of the beam
size (defocusing) because the beam diffracts faster [19] as usual. (ii) a curvature of the interference
fringes which becomes more and more pronounced with the power and these are phase related. These
2 phenomena are due to the non-linear phase acquired by the beam during the propagation in the
medium. This is well explained in [9].
Then we numercialy analyse the data. From the curvature of fringes, we measure the acumulated
non-linear phase ∆φ, according to the model in [20]:

∆φ(r, L) = k0L
n2I(r)
1 + I(r)

Is

+ φ0, (8)
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(a) (b)

2,5mm

Figure 8: Interference fringes: (a) P=30 mW, (b) P=600 mW. For these data ∆ = −2 GHz and
transmission is 5%, T = 105◦C.

where L is the cell length and Is is the saturation intensity for which the value of the non-linear phase
reaches a threshold [21]. ∆φ is ploted in orange on Fig.9. The rest of the curve is a noise phase
calculated and is not taken into account. The curve is ploted as a function of the radial coordinate of
the beam. Here the waist of the pump beam is 0.4 mm.
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Figure 9: Phase profile as a function of the radial coordinate of the beam, P=600 mW. For these data
∆ = −2 GHz and transmission is 5%, T = 105◦C.
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The origin corresponds to φ0 = 0. Then, we calculate the non-linear refractive index given by:

∆n = ∆φ
k0L

. (9)

The cell length is L = 6.8 cm. To characterize the non-linearity we plot ∆n for 13 values on intensity.
Finaly we obtain Fig.10.
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Figure 10: ∆n as a function of the intensity. The fitted curve comes from analytical calculation. For
these data ∆ = −2 GHz and transmission is 5%, T = 105◦C.
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4 Turbulence in 2 counter-streaming fluids of light
4.1 Dispersion relation
We now consider the case of 2 fluids of light. This part is based on the theorical work in [1]. One fluid
is considered to be at rest while the other is flowing at a velocity v0. As a reminder, the NLSE (5)
can be mapped onto the hydrodynamic formulation (7).
The hydrodynamic quantities can be expanded as ρ1,2 = ρ0/2 + δρ1,2,v1 = δv1,v2 = v0 + δv2. This is
equivalent to NLSE for the superposition ψ = ψ1 + ψ2. The linear dynamics are evaluated by Fourier
decomposition, δρ1,2(r⊥, z) = A1,2e

ik.r⊥−iΩz, Ai is the amplitude, k is the transverse wave vector and
Ω the frequency of the elementary excitations, related by the dispersion relation:

1− 1
2c

2
sk

2
(

1
Ω2 − k4/4 + 1

(Ω− v0.k)2 − k4/4

)
= 0, (10)

with cs = c
√

∆n is the fluids speed of sound. In the case of one fluid of light with a density ρ0, Ω2

is equivalent to the Bogoliubov dispersion relation of a weakly interacting Bose gas, describing an
acoustic (fluid) regime at low momenta. Remark, the Bogoliubov dispersion relation has been recently
measured for a quantum fluid of light in our team [22], [23] (cite fontaine 2018).
We now define the healing length ξ as the scale at which the fluid behavior breaks and turns into a
single-particle (massive photon) regime. It is defined as ξ = 1

k0
√
|∆n|

.
Then the solution of (10) gives:

Ωξ2 = 1
2kξ

(
β ±

√
2 + β2 + (kξ2 ± 2

√
1 + 2β2 + β2(kξ)2

)
, (11)

where we defined the Mach number β = v0/cS .

Figure 11: Real and imaginary part of the solutions of the dispersion relation (11) for different fluid
velocity. This figure is adapted from [1].

For the conditions
√
β2 − 4 ≤ kξ ≤ β the imaginary part of the dispersion relation is positive

Fig.11. It means that there is an unstable region (as seen in Fig.12) where there is a gain of energy.
The system will have to disspate it by vortex pair generation which will induce instabilities similar to
classical hydrodynamics. Experimentaly it is in this region that we want to be.
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Figure 12: Diagram of the Mach number β as function of the dimensionless value kξ. The 2 dashed
lines represent the conditions where the imaginary part is positive. This figure is from [1].

4.2 Experimental setup
Experimentaly we use a Spatial Light Modulator (SLM) to seperate the beam (1) in 2 counter-streaming
beams, (1.1) and (1.2), that we send in the non-linear medium (Rb cell). The scheme is shown in Fig.13.

Muquans laser

Rb vapor cell

Telescope

Cam

SLM

Slot

(1) PBS

(1.1)

(1.2)

Figure 13: Experimental setup. The PBS allow us to control the power on the setup by changing to
polarisation with the first wave plate. A first telescope is used to make the size of the beam larger
on the SLM. Then a second one, doing the image of the SLM on the input of the Rb cell. The last
telescope is imaging the output of the Rb cell on the camera.

We have control on the transverse wave vector k⊥ of beams (1.1) and (1.2) thanks to the SLM (I
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will explain in 4.2.1. how this device works).
In the cell the 2 beams are propagating and overlaping along the optical axis as shown on Fig.13. By
using large power (300 mW ≤ P ≤ 1 W) and being close to the resonance (∆ ' −2 GHz) the non-
linearity will be stronger and the field of each beams can be described as the NLSE (5). This is called
the non-linear regime in contrast to the linear regime where the non-linearity is zero at small power
and far from the resonance (∆ ' −5 GHz). The reason why the detuning affects the non-linearity is
that for large value, the beam will not interact with Rb atoms, and by changing its value we change
this interaction.

4.2.1 SLM and fluids velocity control

As a reminder we defined the velocity field as v = (c∇⊥φ)/k0. It means that changing the phase gives
us control on the velocity of the fluids. To do that we use a Spatial Light Modulator (SLM) on which
we can print a phase patern to shape the wavefront of our beam (Fig.14(a)).

The SLM is a device with a small screen that we plug to a computer which reconize it as a second
screen. This screen is pixel compound containing liquid crystals. We can control individualy each of
these pixels by applying a tension to them which will change their birefringence and induce a phase
shift. To control it we print on thhe screen the image we want composed of a 256 levels of grey gradient,
white is zero phase shift and black is a 2π phase shift.
For the experiment we use the SLM as a biprism, by printing the Fig.14(b) on the SLM screen, to
seperate the initial beam (1) in 2 counter-streaming beams (1.1) and (1.2). In addition we print a
phase grating which separates the part of the beam that is phase shifted from the rest. The 2 beams
are recovered in reflection of the SLM.

Figure 14: (a) SLM. (b) Phase pattern printed on the SLM working as a biprism

Finaly we can control the Mach number β of one beam with the SLM:

β = v

cs
= k⊥

k0
√

∆n
, (12)

Experimentaly this amounts to having 2 beams propagating at opposite velocities.

4.2.2 Imaging of interferences evolution in the non-linear medium

We want to observe the evolution of the interference fringes for different propagation times. Experi-
mentaly we image only the output of the cell with a camera. Then the linear regime is taken with a
large detuning or low power as on Fig.15(a). The non-linear regime is taken for small detuning (near
to the resonance) and large power Fig.15(b).
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2.5mm

(a) (b)

Figure 15: Evolution of the interference fringe : (a) linear case P = 20 mW, ∆ = −5 GHz and
transmission is 100%,(b) non-linear case P = 300 mW, ∆ = −2 GHz and transmission is 5%. For these
data T = 105◦C and k⊥ = 10 mm−1.

After propagating we can see instabilities in the interference fringes shown on Fig.15(b) as predicted
by the theory developed in [1].

4.3 Density distribution in the momentum space
To study the turbulence we investigate how the density distribution in the momentum space evolve
for linear and non-linear regime.
We image the output of the Rb cell on a camera. In the linear case (i.e large detuning ∆ and low power)
it is expected that to have fringes (Fig.15(a)) because the 2 counter-streaming beams are interfering
together. Then we do the Fourier transform (FT) of the images taken by the camera (Fig.16(a)) and
plot the density profile as function of kx > 0 for ky = 0 (Fig.16(b)). In practice, the density profile are
plotted by taking the average of the densities on 10 horizontal lines in the center. Similarly, we take
50 pictures while making the beams (1) moving randomly, for exemple by tilting a mirror. Because
the instabilities results are random, we normalise this effect to avoid biased measurements. And we
want to remove errors due to imperfections present on our lenses, mirrors and on the border of our
rubidium cell. The final spectrum is the mean of the 50 FTs.

The distance between the two peaks from the center peak in the Fourier space shown Fig.16(a)
gives the value of the wave vector of beams (1.1) and (1.2).
The value of β given on the density profile is calculated from (12). The value of t is equivalent to the
propagation time at the intput of the medium. The effective t = 0 ξ/cs is equivalent to saying that the
propagation is in the linear regime.

In a second part, we study the evolution of the density profile in the non-linear regime, at t = 40 ξ/cs
for different value of β on Fig.17.

We observe that, for the non-linear regime, the peak width (at kξ = β) is larger due to the velocity
redistribution. These results are close to what is expected in the theory [1] or [2]. But there are some
difference between the theory and the experiment that we need to highlight:

(i) for the turbulent regime the peak (at kξ = β) is shifted to smaller value of k this does not appear
in the theory. This might be from the defocusing effect caused by the non-linearity which makes the
distance between the fringes greater and not the same everywhere. To minimize this effect we can
use a flathead (non-Gaussian) beam which allows us to have the same intensity everywhere, which no
longer causes this inequality. However, this is difficult to achieve experimentally, instead we use an
elongated beam (light sheet) to make the intensity of the beam flatter on the center. Another reason
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Figure 16: (a) Final FT (average on 50 FTs) of Fig.15(a), the grey dashed region is where the density
(<n>) profile is averaged. (b) density profile on 1D line (kx > 0 and ky = 0). For these data
∆ = −5 GHz and transmission is 100%, T = 105◦C, k⊥ = 10 mm−1, P = 50 mW.
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Figure 17: Density profile : (a) β = 0.26, (b) β = 0.35, (c) β = 0.44. The blue and orange curves
are respectivly the linear and non-linear case. For these data ∆ = −5 GHz (transmission is 100%)
and P = 50 mW for t = 0 ξ/cs. ∆ = −2 GHz (transmission is 5%) and P = 600 mW for t = 40 ξ/cs,
T = 105◦C, k⊥ is 7.5, 10 and 12.5 mm−1.

could be because the value of the non-linear refractive index is not constant and changes along the
propagation. Moreover, in the theoretical simulations, parameters like the absorption that affects the
experiment have not been taken into account.

(ii) the maxiumum value of β reachable in the experiment is not large enough to explore other
regime like the supersonic regime when β is larger that one. In the supersonic regime the light is no
longer superfluid because the Landau criterion [24] is outdated. To increase β there are two possibili-
ties. First, make the value of ∆n smaller, for exemple by decreasing the temperature of the medium.
The atomic density of the medium will change, and if it is too small, we will not be in the fluids of
light regime because the propagation time will be too small. The idea is to find the good balance
for the temperature. Secondly, make the value of the velocity fluids larger by applying a higher value
of k⊥ on the SLM. But if the wave vector is too large the two beams will not overlap at the output
of the medium. To solve this problem we need to use a shorter cell, but if the cell is too short the
propagating time will be too small and the instabilities will not have the time to develop enough to
become turbulence. Here again it’s a matter of balance.
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We are working on the improvement of these points. After that, an idea could be to reconstruct
the experimental dispersion relation with its imaginary part to know for which value of k⊥ the system
has a maximum energy gain. Then, we could probe the turbulence with a third beam, which would
be at very low power compared to the 2 counter-streaming beams. We will observe a power gain on
this one for the values of k where the gain of energy in system the is maximum.
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5 Turbulent cascade and vortices
Turbulence is a phenomenon that occurs when the kinetic energy of a flowing fluid becomes too large
in relation to the viscosity forces. In the case of superfluids the viscosity is zero. The turbulence
comes from the energy gain due to the imaginary part of the dispersion relation. This excess energy
will then be dissipated by the system via the generation of vortex pairs. Turbulent cascade is a form
of energy transfer between high kinetic energy vortices and smaller ones that absorb and dissipate it.
This mechanism is at the origin of the turbulent flow like shown on Fig.18.

Figure 18: Exemple of generation of vortex in a fluid. Source : Etienne Behar

5.1 Optical vortices
Optical vortices are propagating electric field in rotation, for exemple like Laguerre-Gauss beams [25].
The electric field is given by:

E(r, θ, z) = A(r, z)× ei
kr2

2R(z) × e−iφG(z) × e−i(kz−ωt) × eilθ, (13)

whith A(r, z) the amplitude field, R(z) the radius of curvature and φG(z) the Gouy phase. Some
exemples of intensity images in the transverse plane to the propagation axis are shown Fig.19. This
expression is the same as for a Gaussian beam but it contains, in addition, the azimuthal phase term eilθ

which characterises the vortices. This new phase term is also called the Orbital Angular Momentum
(OAM). The order of the vortex is given by l.
Thus, a vortex transports the OAM, an additional information dissociated from the polarization and
the wave vector.

Figure 19: Exemple of vortex images from [26]. These are taken in intensity.
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5.2 Phase map and "forks"
The characteristic of a vortex is its wave front having the shape of an ellipsoid as shown on Fig.20. In
other words, it means that the phase is doing a 2πl loop for a vortex of order l. Experimentaly this is
what we expect to see if, indeed, we have vortices in the system.

Figure 20: Wavefront of a propagating vortex, here l = 2. Figure extracted from [26]

To observe it, we need to reconstruct the phase map of the instabilites.
By imaging the output of the cell, we do an interferometer with a reference beam (Fig.21(a)). At
some point, we can see dislocation of the fringes, or also called "forks". For example two interference
branches will regroup into one. Then, we plot the phase map of the dashed area Fig.21(b). Here we
observe phases dislocations ("forks"), for exemple those who have been surrounded, which means that
at those points the phase is doing a 2π loop. In other words, at those points we have a one order vortex.

+Phase MapInterferogram

-

2.5mm

Figure 21: Observation of vortices by recontructing the phase map using an interferometer. For these
data ∆ = −2 GHz and transmission is 5%, T = 105◦C, k⊥ = 17.5 mm−1, P = 600 mW.

These results look alike what other experimental teams saw with their systems, like [27], where
they managed to generate 4 vortices in their system. .But here the difference is that we have a much
larger number of generated vortices randomly distributed.
Another observation is that on both sides of the phase map we see a vertical line where the phase is
jumping. This is called solitons [28] which are solitary wave which propagates without being deformed
in a nonlinear and dispersive fluids.
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5.3 From instabilities to turbulence
To observe how the vortices were generated in the process we plott the images of the instabilities for
different values of the power with the phase map associated (Fig.22). By increasing the power we
increase the non-linearity and the regime is more and more turbulent. The linear case has been taken
for P=20 mW and far from the resonance.
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Figure 22: Evolution of the instabilities and the phase associated for different value of the power. All
of the phase map are reconstructed from the green dashed region. The colormap indicates that the
phase makes one round of −π to +π. For these data ∆ = −2 GHz and transmission is 5%, T = 105◦C,
k⊥ = 17.5 mm−1.

Linear regime : we observe on the sides the same phase pattern printed on the SLM.
P=300 mW : there are instabilities in the interference fringes, also called "snakes" instabilities [29].
These are due to the propagation of contra-propagating solitons that eventually break up [30]. A few
vortices are generated at the center as we can see on the phase map.
P=400 mW : the instabilities begins to break faster and harder, as we can see, we have more vortices
generated and the system begins to be more chaotic.
P=500 mW : Here the system is in the turbulent regime. At this point we have much more generated
vortices randomly distributed.
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6 Conclusion
Building on the theoretical work of other group on quantum fluids of light ([1], [2]), we have succeeded
in making the first experimental realisation and observation of quantum turbulence for fluids of light
in hot atomic vapours.
Light propagating in the paraxial approximations can be described as a quantum fluids [8] and then
the phenomenon of turbulence can be observed. In this work I described the experimental realisation
of turbulence with 2 counter-streaming fluids of light.
This has been achieved by separating and controling the velocity of each fluids and imposing opposite
speeds on them. We then study the evolution of the interference fringes for different propagation
times. We observe the appearance of increasingly pronounced "snake" instabilities until we reach the
turbulent regime where their shape becomes completely random.
Then, by studying the density distribution in the momentum space and by varying the configurations
and propagation times of our fluids, we have observed the effect of the velocity redistribution. Moreover
we identified the differences between the theoretical simulations and our experimental results, and
discussed applications to reduce these differences.
Finally, we have reconstructed the phase map of our beams in order to highlight the presence of pairs
of generated elementary vortices. Their presence is a response of the system to dissipate the energy
gain explained by the positive imaginary part of the dispersion relation.
This work open the way to the study of transitions in out-of-equilibrium dynamics in superfluids of
light. In the next stage of our work, we would like to develop the necessary tools to be able to perform
the first experimental proof of the turbulent cascade in quantum fluids of light.
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