

Quantum Non-Demolition measurement of light

Équipe: Électrodynamique quantique en cavité: C. Sayrin, S. Gleyzes, C. Guerlin, J. Bernu, S. Deléglise, X. Zhou, <u>S. Kuhr</u>, <u>I. Dotsenko</u>, M. Brune, J.M. Raimond, S. Haroche

Aim of the experiment

Laboratoire Kastler Brosse

- Achieve a Quantum Non-Demolition measurement.
- Count photons without destroying them.

Methods

- Circular Rydberg atoms in a Ramsey interferometer.
- High finesse superconducting microwave cavity to store photons.

Results

- Observation of the birth, live and death of individual photons.
- Measurement of up to 7 photon Fock states and monitoring of their collapse down to vacuum.
- Demonstration of the Quantum Mechanics postulates of measurement.

References

- S. Gleyzes *et al.*, Nature **446**, 297 (2007)
- C. Guerlin et al., Nature 448, 889 (2007)

Quantum non-demolition measurement ...

- Described by the Quantum Mechanics measurement postulates: measurement of observable \hat{A} on a system with density matrix $\hat{\rho}$
 - **Possible outcomes:** outcome of a measurement = one of eigenvalues a_i of \hat{A}
 - Probability law of measurement outcomes: $p(a_i) = |\langle \psi_i | \hat{\rho} | \psi_i \rangle|$
 - Projection postulate: system ends up in an eigenstate $|\psi_i\rangle$
- Repeatability: both the system and the measured state $|\psi_i\rangle$ should be preserved

... of light ?

• Counting photons without destroying them

- Eigenvalues: number of photons n
- Eigenstates : energy eigenstates = Fock, or photon number, states $|n\rangle$
- Usual photodetectors (photodiodes, eyes): absorb energy

destructive measurement !!

Thought experiment

Photon box containing few photons **Clock** whose rate is sensitive to photon number π/q angular shift of the hand per photon

measure the photon number = read the hour of the clock

 $0 \le n < 2q$ -1 : unambiguous measurement of *n* $n \ge 2q$: the hand aims periodically toward the same directions

n measured **modulo 2***q*

Reading the hand of the clock

- Injection of a small coherent field into the cavity
- > Atoms prepared in the $|g\rangle$ state
- > 1st Ramsey zone: a first $\pi/2$ pulse (1) brings atoms to the $|e\rangle + |g\rangle$ superposition
- > Cavity: phase shift (2) dependent on the photon number Resulting $|+\rangle_{a}$ states are not mutually orthogonal:

Birth, life and death of photons

• Equilibrium probed by sending an atom every ~1 ms.

final atomic state not determined in a single measurement... number of photons ...except for q=1 !

> 2nd Ramsey zone: a second π/2 pulse (3) combined with atomic state detection

measurement of the atomic spin direction (Ou) dependent on the relative phase η between pulses

$$p(j,\eta|n) = 1 + \cos(n\pi/q - \eta + j\pi) / 2$$
 angle betwee (j=0/1 for

We measure the difference of population $P_e - P_g$, *i.e.* the observable: $\hat{T} = \cos\left[\eta + \Phi(\hat{N})\right]$

Measurement of the photon number...

- q=4, *i.e.* $\Phi = \pi/4$:
- > Injection of a small coherent field into the cavity: $P(n>7) \ll 1$
- Approximately 3500 atoms sent, separated by 0.2 ms during 700 ms.
 Detection phase η varies randomly among 4 different values.

... by atomic spin tomography

Measurement repeated 2000 times
Histograms of the global atomic spin measured during these 2000 realizations

N copies of the same atomic state for each photon number

• For *N* de

... by progressive field collapse

• For *N* detected atoms, we calculate $P_N \ n = \frac{P_0(n)}{7} \Pi_N(n) \text{ where } \Pi_N(n) = \prod_{k=1}^{N} p[j \ k \ ,\eta \ k \ |n]$

Real-time field measurement

Quantum jumps between discrete values of n: damping of the field caught in the act

• $\Pi_{N}(n)$ converges toward a **narrow distribution**

 Thus P_N(n) peaks at one value of n, without any a priori knowledge on the injected field

After ~110 atoms, the unknow initial field collapses to a Fock state !

Comité AERES 2009