

Applications of QND measurement of the photon number: **Quantum Zeno effect and**

Tomography of the relaxation process

Équipe: Électrodynamique quantique en cavité:

S. Deléglise, J. Bernu, C. Sayrin, C. Guerlin, S. Gleyzes, I. Dotsenko, S. Kuhr, M. Brune, J.M. Raimond, S. Haroche

Aim of the experiment

- Demonstrate quantum Zeno effect in the cavity QED context (inhibition of the coherent growth of the field in a cavity coupled to a classical microwave source by repeatedly measuring the photon number).
- Use a statistical ensemble of quantum trajectories obtained by Quantum Non Demolition measurement of the photon number in a cavity to perform the tomography of the relaxation super operator.

Methods

 Quantum non-demolition (QND) measurement of the photon number: by inserting a high finesse cavity in an atomic interferometer, we detect the induced light shift on the atoms crossing the cavity field mode.

Results

- First demonstration of Quantum Zeno effect on a runaway system [1]
- Experimental determination of all jump rates between Fock states [2]

References

[1] J. Bernu et al., PRL **101**, 18402 (2008)

[2] M. Brune et al., PRL 101, 240402 (2008)

Quantum Zeno effect

Previous observations of Zeno effect

The first observation of Zeno effect was performed with trapped ions in 1990, Quantum Zeno effect was observed since then in several physical systems:

- Atoms
- Molecules
- Bose-Einstein condensates

So far, Zeno effect was only demonstrated on two-level systems. The repeated measurements inhibit a Rabi oscillation-like behaviour.

A random walk in phase space

Without measurements

Experimental results

Cavity is prepared in the vacuum state A series of injection pulses inject a field in the cavity.

$$|\alpha_i \approx 0.047\rangle$$
 $(n = \alpha_i^2 = 2.2 \times 10^{-3} \text{ photons})$

- Without intermediate measurements: varying number of injection pulses is applied. The field is then measured by atoms.
- A series of 100 injection pulses is performed. The field is measured by ≈10 atoms crossing the cavity between successive pulses.
- A zoom on the last curve shows a linear initial increase of *n*, followed by saturation due to cavity damping

Tomography of decoherence of pure photon number states

- 1. Prepare vacuum state
- 2. Inject a coherent field (≈3 photons)
- 3. Measure continuously the photon number with probe atoms for 700 ms
- QND measurement projects an initial coherent field into a random Fock state, decay of which appears as a cascade-like succession of quantum jumps.
- By averaging many individual trajectories, we find the mean photon number evolution
- In contrast to Quantum Zeno Effect, decay rate is unaffected by the measurement

500

400

300

200

100

600

Improving the time resolution 110 atoms to converge = 26 ms > lifetime for n=7 (18 ms) $p_{N=25}(n,t)$ By iterating this process, we refine ${}^{2}p_{N=25}(n,t)$ our initial guess $P_1(n)$ untill it reaches the fix point of the $^{3}p_{N=25}(n,t)$ procedure P(n). $P_0 = 1/8$ $\rightarrow P_1(n,t)$ $p_{N=25}(n,t)$ P(n) is the population distribution at the middle time of the

25 atoms = 6 ms!

window

Time (ms)

200

300

200

100