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Institutions 

Sequential  
preparation 

 An pre-set sequence of targets 

is chosen 

 As soon as fidelity of the current 

target reaches 80%, the target is 

changed. 

 Illustration of adaptive 

measurement 
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 We can compare the feedback 

results to the photon populations 

of coherent states                      

 Stabilization efficiency: the average 

populations for 4000 trajectories stopped 

at an arbitrary time 

 

 Preparation efficiency: the trajectory 

is stopped when P(ntarget) ≥ 0.8 

 

Atom preparation errors (~1%) 

Erroneous state detection (~5%) 

Sequence {3,1,4,2,6,2,5} 

Main Ideas 
 A series of frequent measurement can block the evolution of a quantum system : 

the so-called quantum Zeno effect  (QZE) 

 When the measurement has degenerate eigenvalues, the evolution of the system 

is restricted to a subspace of its Hilbert space, giving rise to Quantum Zeno 

Dynamics (QZD) 

 An implementation of QZD is possible in a state-of-the-art Cavity  Quantum 

Electrodynamics (CQED) experiment, in construction at ENS. 
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Quantum Zeno dynamics in CQED 

System 
 A circular Rydberg atom (levels     ,    ,    ) coupled to a high-Q  

microwave cavity 

 Levels g  and e  are strongly coupled to the cavity resulting in 

dressed states : 

 

 

     where n is the number of photons in the cavity. 

 

 A microwave source S’ probes transitions between the levels h,n  

and the dressed states  

Evolution 
 A source S injects photons in the cavity mode : 

 

Quantum Zeno Dynamics 

A Cavity QED setup 
 By repeated measurements 

 An atom in     is coupled to the cavity vacuum 

 Coherent evolution over a time t injects a small 

coherent field                       in the cavity 

 The source S’ is tuned to perform a f=p Rabi 

pulse on the                        transition (        ) 

 The atom is measured, with a high probability in 

state  

 The measurement makes sure that the field is not 

in state    , and is equivalent to  

 

 The total evolution is given by : 

 Initial state        , 

 Coherent evolution over a time t injects a small coherent field                       in the cavity, 

 The source S’ is tuned to perform a f=2p Rabi pulse on the                        transition (        ), 

 The atom ends up in      , the field experiences the kick :  

 

 Coherent evolution and kick are repeated. 

 
converges in the limit               to :  

Restriction of H to the subspace 

containing less than s photons 

Restriction of  H to the subspace 

containing more than s  photons 

Confined dynamics in QZD 
 

Total evolution : 

 Superconducting Fabry-Perot cavity 

 Mode at 51,1GHz with lifetime up to 

130 ms 

 

 Atoms out of a 2D-MOT are cooled and 

slowed via 3D moving molasses : long 

residence in the mode waist (~10ms) 

 Preparation inside the cavity into 

circular Rydberg states      and     with 

lifetimes of ~30ms  

 

 Atom and cavity are strongly coupled 

Possible to achieve multiple manipulations on an atom in interaction with the field 

For s=6 the coherent growth is confined inside or outside an exclusion circle (EC) 

Snapshots of the field Wigner function W(x) as a function of the number of steps N  under 

QZD, for different initial field states. 

Generation of Mesoscopic Field State 

Superpositions (MFSS) and squeezing 

 

can be explained by the semi-classical vector field : 

Phase space tweezers 
 
 The exclusion circle can be translated : 

apply the kick operation on a translated state 

 

 

 Without coherent injection, an EC with s=1 translated to successive amplitudes                        

                               will trap and transport a coherent component through phase space. 

 Such phase space tweezers can 

be used to amplify a MFSS : 

 

The state                    (a) is turned in  

100 steps (50 for each component) 

into the state                      (b)  

 

Imperfect confinement and MFSS generation 

 The f = 2p Rabi pulse can be replaced by an 

arbitrary f ≠ 0. The field is still kicked and 

never contains s  photons : no atom-field 

entanglement and perfect QZD for              . 

 For finite   , different values of f and b 

(displacement per step) make the EC  

semi-transparent. 

For b = 0.345, and f = 3.03 rad, 

a MFSS containing 24 photons is generated 

in a few steps. 

(a) Snapshots of W(x) for different number 

of steps 

(b) Final Wigner function (N=14). Fidelity is 

75% w.r.t. an ideal MFSS 

Arbitrary state synthesis 
 Principle : “pull” with tweezers any superposition of coherent components from the vacuum 

 

 Step 1 : split the amplitude of the vacuum between two atomic states : 

 

(Use a narrowband source S2 to address specifically this transition) 

 Step 2 : protect the  g    component : “shelving” to a level  

 

(Hard p pulse with a source S3) 

 Step 3 : tweezing from 0 to     acts only on the   h,0 component 

 

 Step 4 : restore the        component with S3 

 

 Iterate from step 1 : 

Coefficients ai and bi can be tuned to 

produce an arbitrary state  

 

(right) Wigner function W(x) of the state 

 

obtained with 99% fidelity 

Realistic experiment 
 
 Source S’ addressing     

should not disturb nearby transition 

 Pulse duration chosen for a ppp pulse (pp even) 

on 

 Phase shifts on         levels (light shift effect) : 

use composite pulses : 

p 

p 

Stark 

phaseshift 

opposite  

detunings 

 Low spurious transfers and phase shifts 

Promising simulations 
  Take into account field relaxation 

Two collisions with an 

s=3 EC produce a three-

component MFSS in 

4.4ms 

Fidelity w.r.t. an ideal 

MFSS is 69% 


