

Towards quantum Zeno dynamics with Rydberg atoms in a cavity

Cavity Quantum Electrodynamics group

B. Peaudecerf, T. Rybarczyk, A. Signoles, I. Dotsenko, S. Gleyzes, M. Brune, J.M. Raimond and S. Haroche

In collaboration with S. Pascazio and P. Facchi

Main Ideas

- > A series of frequent measurement can block the evolution of a quantum system : the so-called quantum Zeno effect (QZE)
- When the measurement has degenerate eigenvalues, the evolution of the system is restricted to a subspace of its Hilbert space, giving rise to Quantum Zeno Dynamics (QZD)
- > An implementation of QZD is possible in a state-of-the-art Cavity Quantum Electrodynamics (CQED) experiment, in construction at ENS.

References

- J.-M. Raimond et al. Phys. Rev. Lett. 105, 213601
- J.-M. Raimond et al. (to be published)

A Cavity QED setup

- Superconducting Fabry-Perot cavity
- Mode at 51,1GHz with lifetime up to 130 ms
- Atoms out of a 2D-MOT are cooled and slowed via 3D moving molasses : long residence in the mode waist (~10ms)
- Preparation inside the cavity into circular Rydberg states $|g\rangle$ and $|e\rangle$ with lifetimes of ~30ms
- Atom and cavity are strongly coupled

Possible to achieve multiple manipulations on an atom in interaction with the field

Quantum Zeno dynamics in CQED

System

- \triangleright A circular Rydberg atom (levels $|h\rangle, |g\rangle, |e\rangle$) coupled to a high-Q microwave cavity
- Levels $|g\rangle$ and $|e\rangle$ are strongly coupled to the cavity resulting in dressed states:

$$|g,0\rangle, \quad |\pm,n\rangle = \frac{1}{\sqrt{2}}(|e,n-1\rangle \pm |g,n\rangle), \quad n \ge 1,$$

where *n* is the number of photons in the cavity.

 \triangleright A microwave source S' probes transitions between the levels $|h,n\rangle$ and the dressed states

Evolution

A source S injects photons in the cavity mode :

$$H = \alpha a^{\dagger} + \alpha^* a$$

Quantum Zeno Dynamics

- \triangleright Initial state $|h,0\rangle$,
- Coherent evolution over a time τ injects a small coherent field $|\beta = -i\alpha \tau/\hbar\rangle$ in the cavity,
- The source S' is tuned to perform a $\phi=2\pi$ Rabi pulse on the $|h,s\rangle \to |+,s\rangle$ transition ($s\geq 1$),
- \succ The atom ends up in $|h\rangle$, the field experiences the kick :
- $U_s = 1 2|s\rangle\langle s|$ Coherent evolution and kick are repeated.

Total evolution : $U_K^{(N)}(t) = (U_s \exp{-iHt/\hbar})^N$, $t = \tau/N$ converges in the limit $N \to \infty$ to :

 $H_Z = H_{< s} + H_{> s}$

Restriction of *H* to the subspace containing less than s photons

Restriction of *H* to the subspace containing more than s photons

Confined dynamics in QZD

Snapshots of the field Wigner function $W(\xi)$ as a function of the number of steps N under QZD, for different initial field states.

Generation of Mesoscopic Field State Superpositions (MFSS) and squeezing

can be explained by the semi-classical vector field:

Imperfect confinement and MFSS generation

- The $\phi = 2\pi$ Rabi pulse can be replaced by an **arbitrary** $\phi \neq 0$. The field is still kicked and never contains s photons : no atom-field entanglement and perfect QZD for $N \to \infty$.
- \triangleright For finite N, different values of ϕ and β (displacement per step) make the EC semi-transparent.

For $\beta = 0.345$, and $\phi = 3.03$ rad,

- a MFSS containing 24 photons is generated in a few steps.
- (a) Snapshots of $W(\xi)$ for different number of steps
- (b) Final Wigner function (N=14). Fidelity is 75% w.r.t. an ideal MFSS

Phase space tweezers

> The exclusion circle can be translated: apply the kick operation on a translated state

$$U_s \to D(\gamma)U_sD(-\gamma), \qquad D(\gamma) = \exp(\gamma a^{\dagger} - \gamma^* a)$$

- \triangleright Without coherent injection, an EC with s=1 translated to successive amplitudes γ_i , $|\gamma_i - \gamma_{i+1}| \ll 1$ will trap and transport a coherent component through phase space.
- Such phase space tweezers can be used to amplify a MFSS:

The state $|2\rangle + |-2\rangle$ (a) is turned in 100 steps (50 for each component) into the state $|5i\rangle + |-5i\rangle$ (b)

Arbitrary state synthesis

Principle: "pull" with tweezers any superposition of coherent components from the vacuum

Step 1 : split the amplitude of the vacuum between two atomic states :

 $|g,0\rangle \rightarrow a_1|g,0\rangle + b_1|h,0\rangle$ (Use a narrowband source S_2 to address specifically this transition)

> Step 2 : protect the $|g,0\rangle$ component : "shelving" to a level $|i\rangle$

 $a_1|i,0\rangle+b_1|h,0\rangle$

(Hard π pulse with a source S_3)

 $a_1|i,0\rangle+b_1|h,\gamma_1\rangle$ **Step 4 :** restore the $|g,0\rangle$ component with S₃

 $a_1|g,0\rangle+b_1|h,\gamma_1\rangle$ Iterate from step 1 :

Coefficients a_i and b_i can be tuned to

produce an arbitrary state $|\psi_t\rangle = \sum_{j=1}^m c_j |\gamma_j\rangle$

(right) Wigner function $W(\xi)$ of the state $|4\rangle + |4i\rangle + |3e^{i5\pi/4}\rangle + |0\rangle$ obtained with 99% fidelity

Realistic experiment

 \triangleright Source S' addressing $|h,s\rangle \rightarrow |+,s\rangle$ should not disturb nearby transition $|h, s-1\rangle \rightarrow |+, s-1\rangle$

- \triangleright Pulse duration chosen for a $p_p \pi$ pulse (p_p even) on $|h, s-1\rangle \rightarrow |+, s-1\rangle$
- \triangleright Phase shifts on $|h,n\rangle$ levels (light shift effect) : use composite pulses:

Low spurious transfers and phase shifts

Promising simulations

Take into account field relaxation

Two collisions with an s=3 EC produce a threecomponent MFSS in 4.4ms Fidelity w.r.t. an ideal MFSS is 69%

0.4

0.2

-0.2

-0.4