Introduction
The current version of the code is 2023.2. It has been derived from a MCDF code developed by Jean-Paul Desclaux in the early 1970 [1, 2]. It was then a joint work between Paul Indelicato and Jean-Paul Desclaux starting in 1984. Paul Indelicato developed an add-on code, GME (General Matrix Elements) that used the MCDF wavefunctions to evaluate transition probabilities and diagonal and non-diagonal hyperfine matrix elements [3, 4]. The two codes have been merged in the early 1990s.
J.-P. Desclaux passed away August 28th, 2020. His obituary can be found in Physics Today here.
Description
The main properties of the 2023.2 code version are the following:
- Can accommodate arbitrary number of open-shells (within your computer memory and disk space) [2]
- Perturbative [5, 6] or Self-consistent Breit interaction inclusion [6].
- Automatic single and double excitation generation, with Brillouin theorem option [7]
- Full JJ⇒LSJ recoupling
- Many different nuclear models (Fermi, 3-parameters Fermi [8], Fourier-Bessel [8], Sum of Gaussian [9], Gaussian [10], Exponential [10] …)
- Full self- consistent treatment of Uehling vacuum polarization [10]
- First and Second order QED corrections whenever known.
- Improved nuclear recoil corrections [11, 12] based on [13]
- Full projection operator included to eliminate negative energy continuum [14, 15]
- Large variety of numerical methods to help convergence in difficult cases.
- Super-heavy elements [16-21]
- Can evaluate electronic atoms with exotic particles attached (muons [22, 23], pions [24, 25], antiproton [23, 26], kaon [24, 27, 28], sigma [29])
- Can do calculations for positronium and muonium.
Operators that can be evaluated are the following (including Breit or vacuum polarization contribution, by evaluating wavefunction self-consistently with these contributions):
- Landé g-factors [17, 30-32]
- Diagonal and non-diagonal hyperfine matrix elements (including Bohr-Weisskopf effect and exotic atoms) [3, 10, 24, 33-40]
- parity violation [41-43]
- Auger and photoinisation cross sections (in the frozen orbitals of the initial state) [44, 45]
- All multipole radiative transition rates, with non-orthogonal initial and final states, and contribution from negative energy continuum [3, 46, 47]
- Stark matrix elements
- Electronic excitation cross sections at the born approximation
- Scalar product with full relaxation of two wavefunctions
- Binary encounter Bethe model for electron-impact excitation and ionization [48-51]
- Shake-off probability [52, 53]
- Magnetic part of the anomalous magnetic moment contribution to antiprotonic atoms [26, 54]
- Two-photon transition rates for one-electron atoms, including case with resonant intermediate states [46, 55-62]
New developments:
The 2022.3 version has many new features compared to the 2005.1 version, mostly in an experimental stage:
- Full relaxation can now be included in the Auger and photoionization cross section.
- EDM matrix elements can be evaluated.
- Angular momentum of exotic particles and of the electronic part of the atom can be independently specified.
- For the evaluation of the Bohr-Weiskopf effect, the magnetic moment distribution of the nucleus can be specified independently of the charge distribution.
- Automatic generation of triple excitations
- Vacuum polarization by milli-charged particles for normal and exotic atoms.
- Shift due to massive bosons interaction with the nucleus.
- The self-energy screening correction is now evaluated by two different methods, the Welton method, historically implemented in 1987-1990 [63, 64], and the model operator method [65, 66], including super-heavy elements up to Z=170 [67].
The 2005 version, in precompiled form, is available from this web page, upon registration.
Built-in parameters
The code contains the nuclear radii from [68] which are automatically used for Z≥2. It uses recent measurements for H [69, 70], D [71], 3He and 4He [72]. If the Fourier-Bessel or Sum of Gaussian models are used, it uses the corresponding charge state distributions instead. It also uses the formula from [68] to extrapolate A for higher-Z. The atomic masses come from the AME2016 papers [73, 74].
The fundamental constants used in the code are from the CODATA 2018 values [75] except for the fine structure constant taken from [76].
Page updated November 7th, 2023
Bibliography
[1] A Multiconfiguration Relativistic Dirac-Fock Program, J.P. Desclaux. Computer Physics Communications 9, 31-45 (1975).
[2] Détermination des fonctions propres des opérateurs moments angulaires L2, S2 et J2 en couplage (J.J.). Application à l’étude de certains effets relativistes, N. Bessis, G. Bessis and J.-P. Desclaux. Journal de Physique 31, C4-231 (1970).
[3] Effect of the hyperfine structure on the 2 3P1 and the 2 3P0 lifetime in heliumlike ions, P. Indelicato, F. Parente and R. Marrus. Phys. Rev. A 40, 3505-3514 (1989).
[4] Contribution à l’étude expérimentale et théorique des ions lourds à un et deux électrons. Thèse P. Indelicato. Université Pierre et Marie Curie. (1987).
[5] MCDF studies of two electron ions I: Electron-electron interaction, O. Gorceix, P. Indelicato and J.P. Desclaux. J. Phys. B 20, 639-650 (1987).
[6] Effect of the complete Breit interaction on two-electron ion energy levels., O. Gorceix and P. Indelicato. Phys. Rev. A 37, 1087 (1988).
[7] Nonrelativistic limit of Dirac-Fock codes: The role of Brillouin configurations, P. Indelicato, E. Lindroth and J.P. Desclaux. Phys. Rev. Lett. 94, 013002 (2005).
[8] Nuclear Charge-Density-Distribution Parameters from Elastic Electron Scattering, H. De Vries, C.W. De Jager and C. De Vries. Atomic Data and Nuclear Data Tables 36, 495-536 (1987).
[9] Model-independent nuclear charge densities from elastic electron scattering, I. Sick. Nucl. Phys. A 218, 509-541 (1974).
[10] Nonperturbative evaluation of some QED contributions to the muonic hydrogen n=2 Lamb shift and hyperfine structure, P. Indelicato. Phys. Rev. A 87, 022501 (2013).
[11] Mass- and field-shift isotope parameters for the $2s\ensuremath{-}2p$ resonance doublet of lithiumlike ions, J. Li, C. Nazé, M. Godefroid, S. Fritzsche, G. Gaigalas, P. Indelicato and P. Jönsson. Phys. Rev. A 86, 022518 (2012).
[12] Relativistic calculations of 1s 2 2s2p level splitting in Be-like Kr, J.M. Sampaio, F. Parente, C. Nazé, M. Godefroid, P. Indelicato and J.P. Marques. Physica Scripta 2013, 014015 (2013).
[13] QED theory of the nuclear recoil effect in atoms, V.M. Shabaev. Phys. Rev. A 57, 59-67 (1998).
[14] Projection operators in Multiconfiguration Dirac-Fock calculations. Application to the ground state of heliumlike ions., P. Indelicato. Phys. Rev. A 51, 1132-1145 (1995).
[15] Projection operators in the Multiconfiguration Dirac-Fock Method, P. Indelicato and J.P. Desclaux. Physica Scripta T46, 110-114 (1993).
[16] Are MCDF calculations 101% correct in the superheavy elements range?, P. Indelicato, J. Bieroń and P. Jönsson. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 129, 495-505 (2011).
[17] QED and relativistic corrections in superheavy elements, P. Indelicato, J.P. Santos, S. Boucard and J.-P. Desclaux. Eur. Phys. J D 45, 155-170 (2007).
[18] Effects of the Breit interaction on the 1s binding energy of super heavy elements., P. Indelicato. J. Phys. B 19, 1719 (1986).
[19] Relativistic calculations of atomic parameters in Ununoctium, J.M. Sampaio, M. Guerra, T.I. Madeira, F. Parente, P. Indelicato, J.P. Santos and J.P. Marques. J. Phys. Conf. Ser. 635, 092095 (2015).
[20] Relativistic calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo, J.M. Sampaio, T.I. Madeira, M. Guerra, F. Parente, P. Indelicato, J.P. Santos and J.P. Marques. Journal of Quantitative Spectroscopy and Radiative Transfer 182, 87-93 (2016).
[21] Dirac-Fock calculations of K-, L-, and M-shell fluorescence and Coster-Kronig yields for Ne, Ar, Kr, Xe, Rn, and Uuo, J.M. Sampaio, T.I. Madeira, M. Guerra, F. Parente, J.P. Santos, P. Indelicato and J.P. Marques. Phys. Rev. A 91, 052507 (2015).
[22] Low-energy X-ray standards from hydrogenlike pionic atoms, D.F. Anagnostopoulos, D. Gotta, P. Indelicato and L.M. Simons. Phys. Rev. Lett. 91, 240801 (2003).
[23] Testing Quantum Electrodynamics with Exotic Atoms, N. Paul, G. Bian, T. Azuma, S. Okada and P. Indelicato. Phys. Rev. Lett. 126, 173001 (2021).
[24] Relativistic calculations of pionic and kaonic atoms’ hyperfine structure, M. Trassinelli and P. Indelicato. Phys. Rev. A 76, 012510-7 (2007).
[25] Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms, M. Trassinelli, D.F. Anagnostopoulos, G. Borchert, A. Dax, J.P. Egger, D. Gotta, M. Hennebach, P. Indelicato, Y.W. Liu, B. Manil, N. Nelms, L.M. Simons and A. Wells. Physics Letters B 759, 583 (2016).
[26] X-ray transitions from antiprotonic noble gases, D. Gotta, K. Rashid, B. Fricke, P. Indelicato and L.M. Simons. Eur. Phys. J D 47, 11-26 (2008).
[27] X-ray energies of circular transitions and electron screening in kaonic atoms, J.P. Santos, F. Parente, S. Boucard, P. Indelicato and J.P. Desclaux. Phys. Rev. A 71, 032501-8 (2005).
[28] Energy Levels of Hydrogenlike Kaonic Atoms, J.P. Santos, F. Parente, S. Boucard and P. Indelicato. Hyp. Int. 146, 325-329 (2003).
[29] X-ray energies of circular transitions in sigmonic atoms, J.P. Santos, F. Parente, S. Boucard and P. Indelicato. Nucl. Instrum. Methods B 235, 206-209 (2005).
[30] Ground-state Landé g-factors for selected ions along the boron isoelectronic sequence, J.P. Marques, P. Indelicato, F. Parente, J.M. Sampaio and J.P. Santos. Phys. Rev. A 94, (2016).
[31] Correlation and relativistic effects on Landé gj factors of atomic ions, P. Indelicato, A.M. Mårtensson-Pendrill, W. Quint and J.P. Desclaux. Hyp. Int. 146-147, 127-131 (2003).
[32] The gJ factor in the ground state of Ca+, G. Tommaseo, T. Pfeil, G. Revalde, G. Werth, P. Indelicato and J.P. Desclaux. Eur. Phys. J D 25, 113-121 (2003).
[33] Hyperfine Quenching of the 3s23p63d4 J=4 level in titaniumlike ions, F. Parente, J.P. Marques and P. Indelicato. EPL 26, 437-442 (1994).
[34] Hyperfine quenching of the 1s2 2s2 2p6 3s3p 3P0 level in magnesium-like ions, J.P. Marques, F. Parente and P. Indelicato. Atomic Data and Nuclear Data Tables 55, 157-170 (1993).
[35] Hyperfine Quenching of the 1s2 2s2p3P0 Level in Berylliumlike Ions, J.P. Marques, F. Parente and P. Indelicato. Phys. Rev. A 47, 929-935 (1993).
[36] Hyperfine Quenching and Measurement of the 23P0-23P1 Fine-Structure Splitting in Heliumlike silver (Ag45+), B.B. Birkett, J.P. Briand, P. Charles, D.D. Dietrich, K. Finlayson, P. Indelicato, D. Liesen, R. Marrus and A. Simionovici. Phys. Rev. A 47, R2454-R2457 (1993).
[37] Hyperfine Quenching and Precision Measurement of the 23P0-23P1 Fine Sructure Splitting in Heliumlike Gadolinium (Gd62+), P. Indelicato, B.B. Birkett, J.P. Briand, P. Charles, D.D. Dietrich, R. Marrus and A. Simionovici. Phys. Rev. Lett. 68, 1307-1310 (1992).
[38] Theory of the 2S–2P Lamb shift and 2S hyperfine splitting in muonic hydrogen, A. Antognini, F. Kottmann, F. Biraben, P. Indelicato, F. Nez and R. Pohl. Annals of Physics 331, 127-145 (2013).
[39] M1, M2 and hyperfine-induced decay rates in Mg-like ions of Co, Ni and Cu measured at a heavy-ion storage ring, E. Träbert, M. Grieser, J. Hoffmann, C. Krantz, S. Reinhardt, R. Repnow, A. Wolf and P. Indelicato. New Journal of Physics 13, 023017 (2011).
[40] Complete-active-space multiconfiguration Dirac-Hartree-Fock calculations of hyperfine-structure constants of the gold atom, J. Bieron, C.F. Fischer, P. Indelicato, P. Jonsson and P. Pyykko. Phys. Rev. A 79, 052502 (2009).
[41] Stark quenching for the 1s22s2p 3P0 level in beryllium-like ions and parity-violating effects, M. Maul, A. Schäfer and P. Indelicato. J. Phys. B 31, 2725-2734 (1998).
[42] Prospects for Parity-nonconservation Experiments with Highly Charged Heavy Ions, M. Maul, A. Schäfer, W. Greiner and P. Indelicato. Phys. Rev. A 53, 3915-3925 (1996).
[43] Prospects for an atomic parity-violation experiment in U90+, A. Schäfer, G. Soff, P. Indelicato, B. Müller and W. Greiner. Phys. Rev. A 40, 7362-7365 (1989).
[44] Relativistic Dirac-Fock calculations of KLL Auger transition energies in intermediate coupling, C. Briançon and J.P. Desclaux. Phys. Rev. A 13, 2157 (1976).
[45] Estimation of the ratio of double and single Auger transition rates for the L shell of Kr, Nb and Gd, J.P. Marques, F. Parente, P. Indelicato and J.P. Desclaux. J. Phys. B 31, 2897-2901 (1998).
[46] Negative-continuum effects on the two-photon decay rates of hydrogenlike ions, A. Surzhykov, J.P. Santos, P. Amaro and P. Indelicato. Phys. Rev. A 80, 052511 (2009).
[47] Correlation and Negative Continuum effects for the relativistic M1 transition in two-electron ions using the multiconfiguration Dirac-Fock method, P. Indelicato. Phys. Rev. Lett. 77, 3323-3326 (1996).
[48] Total cross Sections for Inelastic Scattering of Charged Particles by Atoms and Molecules.
- Evaluation of the Next Order beyond the Bethe Asymptote, Y.-K. Kim and M. Inokuti. Phys. Rev. A 3, 665-678 (1971).
[49] Bethe cross sections for the sodium isoelectronic sequence, Y.-K. Kim and K.-T. Cheng. Phys. Rev. A 18, 36-46 (1978).
[50] Binary-encounter-dipole model for electron-impact ionization, Y.-K. Kim and M.E. Rudd. Phys. Rev. A 50, 3954-3967 (1994).
[51] Extension of the binary-encounter-dipole model to relativistic incident electrons, Y.-K. Kim, J.P. Santos and F. Parente. Phys. Rev. A 62, 052710 (2000).
[52] K\alpha_{1,2} x-ray linewidths, asymmetry indices, and [KM] shake probabilities in elements Ca to Ge and comparison with theory for Ca, Ti, and Ge, Y. Ito, T. Tochio, H. Ohashi, M. Yamashita, S. Fukushima, M. Polasik, K. Słabkowska, Ł. Syrocki, E. Szymańska, J. Rzadkiewicz, P. Indelicato, J.P. Marques, M.C. Martins, J.P. Santos and F. Parente. Phys. Rev. A 94, 042506 (2016).
[53] Structure of K\alpha_{1,2}- and $K\beta_{1,3}-emission x-ray spectra for Se, Y, and Zr, Y. Ito, T. Tochio, M. Yamashita, S. Fukushima, A.M. Vlaicu, J.P. Marques, J.M. Sampaio, M. Guerra, J.P. Santos, Ł. Syrocki, K. Słabkowska, E. Wȩder, M. Polasik, J. Rzadkiewicz, P. Indelicato, Y. Ménesguen, M.C. Lépy and F. Parente. Phys. Rev. A 102, 052820 (2020).
[54] Balmer a transitions in antiprotonic hydrogen and deuterium, D. Gotta, D.F. Anagnostopoulos, M. Augsburger, G. Borchert, C. Castelli, D. Chatellard, J.P. Egger, P. El-Khoury, H. Gorke, P. Hauser, P. Indelicato, K. Kirch, S. Lenz, T. Siems and L.M. Simons. Nucl. Phys. A 660, 283-321 (1999).
[55] Relativistic evaluation of the two-photon decay of the metastable 1s^2 2s2p 3P_0 state in berylliumlike ions with an effective-potential model, P. Amaro, F. Fratini, L. Safari, J. Machado, M. Guerra, P. Indelicato and J.P. Santos. Phys. Rev. A 93, 032502 (2016).
[56] Parametrization of the angular correlation and degree of linear polarization in two-photon decays of hydrogenlike ions, P. Amaro, F. Fratini, S. Fritzsche, P. Indelicato, J.P. Santos and A. Surzhykov. Phys. Rev. A 86, 042509 (2012).
[57] Calculation of two-photon decay rates of hydrogen-like ions by using B-polynomials, P. Amaro, A. Surzhykov, F. Parente, P. Indelicato and J.P. Santos. Journal of Physics A: Mathematical and Theoretical 44, 245302 (2011).
[58] Angular correlations in the two-photon decay of heliumlike heavy ions, A. Surzhykov, A. Volotka, F. Fratini, J.P. Santos, P. Indelicato, G. Plunien, T. Stöhlker and S. Fritzsche. Phys. Rev. A 81, 042510 (2010).
[59] Photon polarization in the two-photon decay of heavy hydrogen-like ions, A. Surzhykov, T. Radtke, P. Indelicato and S. Fritzsche. The European Physical Journal – Special Topics 169, 29-34 (2009).
[60] Resonance effects on the two-photon emission from hydrogenic ions, P. Amaro, J.P. Santos, F. Parente, A. Surzhykov and P. Indelicato. Phys. Rev. A 79, 062504 (14) (2009).
[61] Spontaneous relativistic two-photon decay rate mathematical expression in heliumlike systems, J.P. Santos, P. Patté, F. Parente and P. Indelicato. Eur. Phys. J D 13, 27-31 (2001).
[62] Application of B-splines finite basis sets to relativistic two-photon decay rates of 2s level in hydrogenic ions, J.P. Santos, F. Parente and P. Indelicato. Eur. Phys. J D 3, 43-52 (1998).
[63] MCDF studies of two electron ions II: Radiative corrections and comparison with experiment., P. Indelicato, O. Gorceix and J.P. Desclaux. J. Phys. B 20, 651 (1987).
[64] Multiconfiguration Dirac-Fock calculations of transition energies with QED corrections in three-electron ions, P. Indelicato and J.P. Desclaux. Phys. Rev. A 42, 5139-5149 (1990).
[65] QEDMOD: Fortran program for calculating the model Lamb-shift operator, V.M. Shabaev, I.I. Tupitsyn and V.A. Yerokhin. Computer Physics Communications 189, 175-181 (2015).
[66] Model operator approach to the Lamb shift calculations in relativistic many-electron atoms, V.M. Shabaev, I.I. Tupitsyn and V.A. Yerokhin. Phys. Rev. A 88, 012513 (2013).
[67] Model-QED operator for superheavy elements, A.V. Malyshev, D.A. Glazov, V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin and V.A. Zaytsev. Phys. Rev. A 106, 012806 (2022).
[68] Table of experimental nuclear ground state charge radii: An update, I. Angeli and K.P. Marinova. Atomic Data and Nuclear Data Tables 99, 69-95 (2013).
[69] The size of the proton, R. Pohl, A. Antognini, F. Nez, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, L.M.P. Fernandes, A. Giesen, T. Graf, T.W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O.L. Bigot, Y.-W. Liu, J.A.M. Lopes, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J.M.F. dos Santos, L.A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso and F. Kottmann. Nature 466, 213-216 (2010).
[70] Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen, A. Antognini, F. Nez, K. Schuhmann, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, M. Diepold, L.M.P. Fernandes, A. Giesen, A.L. Gouvea, T. Graf, T.W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, F. Kottmann, E.-O. Le Bigot, Y.-W. Liu, J.A.M. Lopes, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J.M.F. dos Santos, L.A. Schaller, C. Schwob, D. Taqqu, J.F.C.A. Veloso, J. Vogelsang and R. Pohl. Science 339, 417-420 (2013).
[71] Laser spectroscopy of muonic deuterium, R. Pohl, F. Nez, L.M.P. Fernandes, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, M. Diepold, A. Giesen, A.L. Gouvea, T. Graf, T.W. Hänsch, P. Indelicato, L. Julien, P. Knowles, F. Kottmann, E.-O. Le Bigot, Y.-W. Liu, J.A.M. Lopes, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J.M.F. dos Santos, L.A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso and A. Antognini. Science 353, 669-673 (2016).
[72] Measuring the α-particle charge radius with muonic helium-4 ions, J.J. Krauth, K. Schuhmann, M.A. Ahmed, F.D. Amaro, P. Amaro, F. Biraben, T.-L. Chen, D.S. Covita, A.J. Dax, M. Diepold, L.M.P. Fernandes, B. Franke, S. Galtier, A.L. Gouvea, J. Götzfried, T. Graf, T.W. Hänsch, J. Hartmann, M. Hildebrandt, P. Indelicato, L. Julien, K. Kirch, A. Knecht, Y.-W. Liu, J. Machado, C.M.B. Monteiro, F. Mulhauser, B. Naar, T. Nebel, F. Nez, J.M.F. dos Santos, J.P. Santos, C.I. Szabo, D. Taqqu, J.F.C.A. Veloso, J. Vogelsang, A. Voss, B. Weichelt, R. Pohl, A. Antognini and F. Kottmann. Nature 589, 527-531 (2021).
[73] The AME2016 atomic mass evaluation (II). Tables, graphs and references, M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi and X. Xu. Chinese Physics C 41, 030003 (2017).
[74] The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures, W.J. Huang, G. Audi, M. Wang, F.G. Kondev, S. Naimi and X. Xu. Chinese Physics C 41, 030002 (2017).
[75] CODATA recommended values of the fundamental physical constants: 2018, E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor. Rev. Mod. Phys. 93, 025010 (2021).
[76] Determination of the fine-structure constant with an accuracy of 81 parts per trillion, L. Morel, Z. Yao, P. Cladé and S. Guellati-Khélifa. Nature 588, 61-65 (2020).
Recent Comments