Un nouveau coprocesseur optique ultra rapide et économe en énergie pour le big data
Sylvain Gigan, membre du LKB est l’un des six inventeurs à l’origine du projet LigthOn.
Il a développé avec cinq autres inventeurs, Laurent Daudet, (Institut Langevin), Florent Krzakala, (Laboratoire de physique statistique), Igor Carron, chercheur et consultant indépendant spécialiste de Machine Learning, Alaa Saade, doctorant de l’ENS, et Angélique Drémeau, post-doctorante au CNRS, une alternative aux processeurs génériques (CPU) et coprocesseurs spécialisés (GPU) habituellement utilisés dans l’analyse des données de très grande taille (big data). Leur technologie brevetée repose sur le développement d’appareils basés sur le contrôle de la propagation de la lumière qui pourraient être utilisés comme co-processeurs ultra-rapides pour le traitement des données.
La solution proposée par LightOn vise à exploiter un nouveau type d’algorithmes, qui se développent rapidement depuis quelques années, basés sur les projections aléatoires des données. “Mélanger” les données de façon contrôlée et reproductible permet de faire ressortir l’information pertinente, c’est-à-dire de garder la structure intrinsèque des données en s’affranchissant de leur grande variabilité et, par exemple, utiliser le résultat de ces projections aléatoires comme entrée d’algorithmes très simples de classification. Le facteur limitant actuellement l’adoption rapide de tels algorithmes est le calcul de ces projections aléatoires : la solution apportée par LightOn consiste à réaliser cette opération de manière optique sans calcul numérique et de façon presque instantanée, avec une dépense marginale d’énergie.
Cette technologie peut être implémentée sur des tailles de données impossibles à traiter de manière conventionnelle avec les co-processeurs graphiques GPU les plus performants.
La technologie LightOn apporte donc potentiellement une alternative aux processeurs génériques (CPU) et co-processeurs spécialisés (GPU) pour répondre à la croissance exponentielle du volume de données. De par sa faible consommation électrique par rapport aux solutions basées sur CPU/GPU (quelques Watts seulement contre plusieurs dizaines voire centaines de Watts), cette technologie permettrait également aux algorithmes d’apprentissage statistique de traiter des données de très grande taille (par exemple en génomique ou pour des objets communicants), tout en permettant de pallier l’explosion des dépenses énergétiques liées au traitement de ces données. Enfin, la technologie LightOn pourrait également apporter une solution aux problèmes très actuels de la sécurité et de l’anonymisation des données.
Ce projet repose sur une longue collaboration interdisciplinaire entre les co-inventeurs dans le domaine du traitement optique de données :
- Sylvain Gigan, professeur à l’UPMC au Laboratoire Kastler-Brossel (UPMC/CNRS/ENS/Collège de France) est spécialiste de l’optique en milieux complexes
- Laurent Daudet, professeur à l’université Paris Diderot à Institut Langevin (ESPCI/Paris Diderot/UPMC/CNRS/INSERM) spécialiste de traitement du signal
- Florent Krzakala, professeur à l’UPMC au Laboratoire de physique statistique (ENS/CNRS/UPMC) spécialiste de physique statistique appliquée à l’algorithmique
- Igor Carron, chercheur et consultant indépendant spécialiste de Machine Learning. Ensemble
Avec l’aide d’Alaa Saade, doctorant de l’ENS, et d’Angélique Drémeau, post-doctorante au CNRS, ils ont exploré la manière dont l’optique des milieux complexes pouvait bénéficier des techniques de traitement du signal. Ils ont montré que l’optique pouvait permettre de réaliser de manière simple une opération de calcul pour l’apprentissage statistique particulièrement laborieuse à implémenter in silico : le mélange aléatoire, idée à la base du projet de valorisation.
CPU : Les processeurs génériques (CPU) désignent l’unité de traitement ou microprocesseur principal d’un ordinateur.
GPU : Un co-processeur GPU est un circuit intégré d’une carte graphique qui assure les fonctions d’affichage des ordinateurs notamment.
Ref : Brevet EP 15305165, Digital-data mixing apparatus and digital-data processing system, déposé le 4 février 2015 aux noms, de la Fondation Paris Sciences et Lettres, de l’ESPCI INNOV, de l’université Paris Diderot – Paris 7, du CNRS, et de M. Igor CARRON.