Des trous noirs énigmatiques révélés par les ondes gravitationnelles

 

C’est la plus grosse prise à ce jour au tableau de chasse des détecteurs d’ondes gravitationnelles LIGO et Virgo : un trou noir ayant la masse de 142 soleils, issu de la fusion de deux trous noirs de 85 et 65 fois la masse du soleil. Le trou noir final est le plus lourd jamais observé avec les ondes gravitationnelles et il pourrait donner des indications sur la formation des trous noirs supermassifs qui siègent au centre de certaines galaxies. La masse d’un des trous noirs ayant fusionné, celui de 85 fois la masse du soleil, fournit des éléments qui pourraient améliorer notre compréhension des ultimes étapes de l’évolution des étoiles massives. La découverte, à laquelle ont contribué au sein de la collaboration Virgo plusieurs équipes du CNRS, dont l’équipe Optomécanique et Mesures Quantiques du LKB, est publiée le 2 septembre 2020 dans les revues Physical Review Letters et Astrophysical Journal Letters.

Capter la naissance d’un trou noir issu de la fusion de deux autres, accompagnée de l’émission d’une énorme quantité d’énergie : ce nouvel épisode pourrait paraître banal tant ces détections se sont enchaînées depuis 2015, lorsque, pour la première fois, furent observées les ondes gravitationnelles issues d’un tel phénomène. Pourtant, GW190521, le signal enregistré le 21 mai 2019 par les instruments LIGO et Virgo, sort du lot car il est non seulement le plus distant et donc le plus ancien (l’onde gravitationnelle a mis 7 milliards d’années à nous atteindre), mais le trou noir qui résulte de la fusion est aussi le plus lourd jamais observé jusqu’ici. Surtout, cette observation est la première preuve directe de l’existence de trous noirs dits « de masse intermédiaire » (entre 100 et 100 000 fois plus massifs que le soleil). Ces derniers sont plus lourds que ceux issus de l’effondrement d’étoiles massives, mais beaucoup plus légers que les trous noirs supermassifs logés au centre de certaines galaxies.

Les trous noirs dont on a observé la fusion, avec leur masse d’environ 65 et 85 fois celle du soleil, intriguent aussi les astrophysiciens. En effet, d’après les connaissances actuelles, l’effondrement gravitationnel d’une étoile ne peut pas former de trous noirs entre environ 60 et 120 masses solaires car les étoiles les plus massives sont complètement soufflées par l’explosion en supernova qui accompagne cet effondrement, ne laissant derrière elles que gaz et poussière. Comment le trou noir de 85 fois la masse du soleil s’est-il donc formé ? Y a-t-il quelque chose de mal compris dans la fin de vie des étoiles massives ? S’il n’a pas une origine stellaire, pourrait-il lui-même résulter d’une fusion antérieure de trous noirs moins massifs ? Est-il au contraire un hypothétique trou noir primordial, formé lors du Big Bang ? L’observation de GW190521 pose de nouvelles questions sur la formation des astres énigmatiques que sont les trous noirs.

 

L’image est extraite d’une simulation numérique de fusion des deux trous noirs. Un couple de trous noirs en orbite l’un autour de l’autre perd de l’énergie sous forme d’ondes gravitationnelles. Les deux astres se rapprochent lentement, un phénomène qui peut durer des milliards d’années avant de s’accélérer brusquement. En une fraction de seconde, les deux trous noirs entrent alors en collision à une vitesse de l’ordre de la moitié de celle de la lumière et fusionnent en un trou noir unique. Celui-ci est plus léger que la somme des deux trous noirs initiaux car une partie de leur masse (ici, l’équivalent de 8 soleils, soit une énergie colossale) a été convertie en ondes gravitationnelles selon la célèbre formule d’Einstein E=mc².

C’est cette bouffée d’ondes gravitationnelles que les deux détecteurs LIGO (aux Etats-Unis) et le détecteur Virgo (en Italie) ont observée. Sur son passage, cette onde dilate puis contracte l’espace. Ainsi, tout objet qui se trouve sur le trajet d’une onde gravitationnelle voit sa longueur varier : ce sont ces infimes variations qui sont repérées dans les détecteurs Ligo et Virgo.

© N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes (SXS) Collaboration